㈠ 各位前輩好:現在面臨就業,一個offer是光電行業的圖像演算法工程師;一個是機器視覺研發工程師;
光電行業的圖像演算法工程師和機器視覺研發工程師應該都是類似工作的,都是做圖像處理的。
目前視覺行業還是比較火的,現在的行業做,然後細分到具體行業做
㈡ 演算法工程師是青春飯嗎以後的發展路線是怎樣的
演算法工程師不是青春飯。
在入職的年齡中,演算法工程師的入職年份越多,就有越多的公司要你。由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。
提到人工智慧,就不得不提人工智慧領域最炙手可熱的演算法工程師。演算法即一系列解決問題的清晰指令,演算法工程師就是利用演算法處理事物的人。演算法工程師主要根據業務進行細分,常見的有廣告演算法工程師、推薦演算法工程師、圖像演算法工程師等等。
但作為熱門領域和人才供不應求的人工智慧,開出的薪資依舊讓人羨慕眼紅。獵頭Jony表示「人工智慧科班出身的博士,50萬年薪僅僅是起步價,優秀的開到80萬、100萬都不一定能搶到。」
㈢ 應屆圖像處理演算法工程師需要掌握哪些
圖像處理中演算法很重要,所以數學根底是必須的。當然也不是說開發圖像處理應用的公司只做演算法,也會有用戶交互,產品升級,特徵控制,軟體授權,等等諸多方面的內容,看你怎麼發展了,對於感興趣的事就不要說什麼復雜困難,否則還不如趁早放棄。C語言是移植性強的語言,而且更接近底層,如果寫演算法應該學習。C++從 功能上來說是C的擴展集合,對C的關鍵字是兼容的,不過兩者的設計理念差距很大。如果真想做,就學吧。
㈣ 圖形學演算法工程師有前途嗎
現在來看任一人工智慧方向的學科都應該是有前途的。
但我對有前途的定義是,可以頂著國際進度,在公司結構中不斷創新,從而創造這個行業。AI的深度學習是不成熟的,需要一段時間、很多人、把這個方向發展起來,這個時候真正參與訓練大型模型,真正積極討論演算法討論解決方案的人,都是這個領域當之無愧的先驅。
AI的共同點是,很長一段時間不能停止學習。尤其是計算機這方面的大學課程難度是非常低的情況下,本碩幾年下來很多人就會莫名其妙被甩開,因為簡歷上可以寫的東西太多太多了。
像圖形學演算法要求就不只是會用一些cv2等圖形工具,也不只是能會用簡單二次回歸訓練模型,而是在這個行業能夠一直保持學習,可能還會有非常多數據處理方法,研究院同行會提出非常多的假設並驗證,集體不斷創立新的世界紀錄,直到AI普及的時候,他們就是第一代人工智慧專家。
㈤ 演算法工程師未來的發展方向35歲以後呢
技術能力是技術人員的立身之本。站在演算法的角度,這里的技術能力主要是演算法應用能力,包括閱讀論文、演算法實現、工程化以及相關文檔的撰寫。
技術人員常見的一個認知誤區是技術大於一切,認為只要技術做好了,就應該得到認可或獎勵。事實上,技術在大多數情況下只是商業中的一環,技術做得好不能確保商業上的成功。
以自營電商為例,技術人員做一款功能強大的購物APP不難,但同時必須有商品研發、供應鏈和物流配送才能完成一個極小的商業閉環。此外,要想商品賣得好得有市場和運營團隊一起發力。在這樣的背景下,購物APP只是諸多商業環節中的一個節點,因此僅僅依賴軟體研發技術顯然不足以實現商業上的成功。好的技術團隊必須始終圍繞各商業環節,有能力定位問題,並研發工具有效地解決問題。
作為演算法工程師,在立項和需求評審時,需要有能力評估項目為業務帶來的價值以及演算法在整個項目中的價值,從而避免把精力浪費在「投入產出比」不高的事情上。如何做到這一步呢?除了有扎實的技術,還需要深入了解業務。
需要了解的業務知識包括(但不限於)商業模式、業務流程、業務限制以及與當前業務相關的技術等等。演算法工程師了解業務的另一個好處是洞察需求,解決問題的同時可以發現更多的技術問題,從而推動業務的進步。
技術人員最難跨越的是從技術能力到業務能力的提升。有兩方面原因:一是技術人員主觀上不太願意處理業務問題(扯皮的事情較多);二是技術人員晉升和跳槽時主要被考察的還是技術,因此業務能力在有些技術人員看來短期的收益不高。
架構能力是一種解決復雜問題的能力,它需要考慮業務的現狀和未來,把復雜問題分解成簡單問題,然後給出解決方案。與軟體架構相比,演算法架構更偏向業務,不僅要對業務進行建模和抽象,還要考慮工程實現,以便技術方案在實際業務中落地。因此,良好的技術能力和業務能力是演算法架構能力的基礎。
演算法相關的技術項目可能涉及到與其它技術工種的配合,例如:產品經理、數據分析、數據開發、前端、後端、測試、運維等。因此,演算法工程師設計的技術方案應該考慮到演算法模塊與其它技術模塊的解耦與協同。
演算法工程師做解決方案時應該從全局出發:一是技術上不僅考慮演算法而且還要考慮工程實現和產品化(切忌手裡有錘子,看什麼都是釘子的想法);二是從整體業務的角度考慮項目帶來的收益。例如,假設推薦系統的重構可以帶來推薦模塊的轉化率提升。那麼這件事情一定值得做嗎?我們還應該評估這個提升效果對大盤利潤的影響。如果對大盤利潤的提升有限,或許應該把精力投入在更有價值的項目中。
㈥ 做了半年圖像演算法工程師感覺很迷茫怎麼辦
已經不太適合了
這種工作比較累,而且做這種要經常參與加班和分工製作,大多都是那些20出頭的年輕人在做這些,一個團隊中,如果你因為特殊情況而不能經常來加班,也確實不怎麼好
還是建議一些文職,或者是自己能控制時間的崗位會比較好
個人意見,僅作參考
㈦ 演算法工程師 就業前景
一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者Java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機
相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。
相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】
(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等
(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。
㈧ 數字圖像處理的發展趨勢
數字圖像處理(digital image processing)是用計算機對圖像信息進行處理的一門技術,使利用計算機對圖像進行各種處理的技術和方法。
20世紀20年代,圖像處理首次得到應用。20世紀60年代中期,隨電子計算機的發展得到普遍應用。60年代末,圖像處理技術不斷完善,逐漸成為一個新興的學科。利用數字圖像處理主要是為了修改圖形,改善圖像質量,或是從圖像中提起有效信息,還有利用數字圖像處理可以對圖像進行體積壓縮,便於傳輸和保存。數字圖像處理主要研究以下內容:傅立葉變換、小波變換等各種圖像變換;對圖像進行編碼和壓縮;採用各種方法對圖像進行復原和增強;對圖像進行分割、描述和識別等。隨著技術的發展,數字圖像處理主要應用於通訊技術、宇宙探索遙感技術和生物工程等領域。
數字圖像處理因易於實現非線性處理,處理程序和處理參數可變,故是一項通用性強,精度高,處理方法靈活,信息保存、傳送可靠的圖像處理技術。主要用於圖像變換、量測、模式識別、模擬以及圖像產生。廣泛應用在遙感、宇宙觀測、影像醫學、通信、刑偵及多種工業領域。
遙感影像數字圖像處理的內容主要有:①圖像恢復。即校正在成像、記錄、傳輸或回放過程中引入的數據錯誤、雜訊與畸變。包括輻射校正、幾何校正等;②數據壓縮。以改進傳輸、存儲和處理數據效率;③影像增強。突出數據的某些特徵,以提高影像目視質量。包括彩色增強、反差增強、邊緣增強、密度分割、比值運算、去模糊等;④信息提取。從經過增強處理的影像中提取有用的遙感信息。包括採用各種統計分析、集群分析、頻譜分析等自動識別與分類。通常利用專用數字圖像處理系統來實現,且依據目的不同採用不同演算法和技術。
數字圖像處理概述
數字圖像處理發展概況
數字圖像處理(Digital Image Processing)又稱為計算機圖像處理,它是指將圖像信號轉換成數字信號並利用計算機對其進行處理的過程。數字圖像處理最早出現於20世紀50年代,當時的電子計算機已經發展到一定水平,人們開始利用計算機來處理圖形和圖像信息。數字圖像處理作為一門學科大約形成於20世紀60年代初期。早期的圖像處理的目的是改善圖像的質量,它以人為對象,以改善人的視覺效果為目的。圖像處理中,輸入的是質量低的圖像,輸出的是改善質量後的圖像,常用的圖像處理方法有圖像增強、復原、編碼、壓縮等。首次獲得實際成功應用的是美國噴氣推進實驗室(JPL)。他們對航天探測器徘徊者7號在1964年發回的幾千張月球照片使用了圖像處理技術,如幾何校正、灰度變換、去除雜訊等方法進行處理,並考慮了太陽位置和月球環境的影響,由計算機成功地繪制出月球表面地圖,獲得了巨大的成功。隨後又對探測飛船發回的近十萬張照片進行更為復雜的圖像處理,以致獲得了月球的地形圖、彩色圖及全景鑲嵌圖,獲得了非凡的成果,為人類登月創舉奠定了堅實的基礎,也推動了數字圖像處理這門學科的誕生。在以後的宇航空間技術,如對火星、土星等星球的探測研究中,數字圖像處理技術都發揮了巨大的作用。數字圖像處理取得的另一個巨大成就是在醫學上獲得的成果。1972年英國EMI公司工程師Housfield發明了用於頭顱診斷的X射線計算機斷層攝影裝置,也就是我們通常所說的CT(Computer Tomograph)。CT的基本方法是根據人的頭部截面的投影,經計算機處理來重建截面圖像,稱為圖像重建。1975年EMI公司又成功研製出全身用的CT裝置,獲得了人體各個部位鮮明清晰的斷層圖像。1979年,這項無損傷診斷技術獲得了諾貝爾獎,說明它對人類作出了劃時代的貢獻。與此同時,圖像處理技術在許多應用領域受到廣泛重視並取得了重大的開拓性成就,屬於這些領域的有航空航天、生物醫學工程、工業檢測、機器人視覺、公安司法、軍事制導、文化藝術等,使圖像處理成為一門引人注目、前景遠大的新型學科。隨著圖像處理技術的深入發展,從70年代中期開始,隨著計算機技術和人工智慧、思維科學研究的迅速發展,數字圖像處理向更高、更深層次發展。人們已開始研究如何用計算機系統解釋圖像,實現類似人類視覺系統理解外部世界,這被稱為圖像理解或計算機視覺。很多國家,特別是發達國家投入更多的人力、物力到這項研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的視覺計算理論,這個理論成為計算機視覺領域其後十多年的主導思想。圖像理解雖然在理論方法研究上已取得不小的進展,但它本身是一個比較難的研究領域,存在不少困難,因人類本身對自己的視覺過程還了解甚少,因此計算機視覺是一個有待人們進一步探索的新領域。
數字圖像處理主要研究的內容
數字圖像處理主要研究的內容有以下幾個方面: 1) 圖像變換由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用。 2) 圖像編碼壓縮圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。 3) 圖像增強和復原圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立"降質模型",再採用某種濾波方法,恢復或重建原來的圖像。 4) 圖像分割圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一。 5) 圖像描述圖像描述是圖像識別和理解的必要前提。作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。 6) 圖像分類(識別)圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視。
數字圖像處理的基本特點
(1)目前,數字圖像處理的信息大多是二維信息,處理信息量很大。如一幅256×256低解析度黑白圖像,要求約64kbit的數據量;對高解析度彩色512×512圖像,則要求768kbit數據量;如果要處理30幀/秒的電視圖像序列,則每秒要求500kbit~22.5Mbit數據量。因此對計算機的計算速度、存儲容量等要求較高。(2)數字圖像處理佔用的頻帶較寬。與語言信息相比,佔用的頻帶要大幾個數量級。如電視圖像的帶寬約5.6MHz,而語音帶寬僅為4kHz左右。所以在成像、傳輸、存儲、處理、顯示等各個環節的實現上,技術難度較大,成本亦高,這就對頻帶壓縮技術提出了更高的要求。(3)數字圖像中各個像素是不獨立的,其相關性大。在圖像畫面上,經常有很多像素有相同或接近的灰度。就電視畫面而言,同一行中相鄰兩個像素或相鄰兩行間的像素,其相關系數可達0.9以上,而相鄰兩幀之間的相關性比幀內相關性一般說還要大些。因此,圖像處理中信息壓縮的潛力很大。(4)由於圖像是三維景物的二維投影,一幅圖象本身不具備復現三維景物的全部幾何信息的能力,很顯然三維景物背後部分信息在二維圖像畫面上是反映不出來的。因此,要分析和理解三維景物必須作合適的假定或附加新的測量,例如雙目圖像或多視點圖像。在理解三維景物時需要知識導引,這也是人工智慧中正在致力解決的知識工程問題。(5)數字圖像處理後的圖像一般是給人觀察和評價的,因此受人的因素影響較大。由於人的視覺系統很復雜,受環境條件、視覺性能、人的情緒愛好以及知識狀況影響很大,作為圖像質量的評價還有待進一步深入的研究。另一方面,計算機視覺是模仿人的視覺,人的感知機理必然影響著計算機視覺的研究。例如,什麼是感知的初始基元,基元是如何組成的,局部與全局感知的關系,優先敏感的結構、屬性和時間特徵等,這些都是心理學和神經心理學正在著力研究的課題。
數字圖像處理的優點
1. 再現性好數字圖像處理與模擬圖像處理的根本不同在於,它不會因圖像的存儲、傳輸或復制等一系列變換操作而導致圖像質量的退化。只要圖像在數字化時准確地表現了原稿,則數字圖像處理過程始終能保持圖像的再現。 2.處理精度高按目前的技術,幾乎可將一幅模擬圖像數字化為任意大小的二維數組,這主要取決於圖像數字化設備的能力。現代掃描儀可以把每個像素的灰度等級量化為16位甚至更高,這意味著圖像的數字化精度可以達到滿足任一應用需求。對計算機而言,不論數組大小,也不論每個像素的位數多少,其處理程序幾乎是一樣的。換言之,從原理上講不論圖像的精度有多高,處理總是能實現的,只要在處理時改變程序中的數組參數就可以了。回想一下圖像的模擬處理,為了要把處理精度提高一個數量級,就要大幅度地改進處理裝置,這在經濟上是極不合算的。 3.適用面寬圖像可以來自多種信息源,它們可以是可見光圖像,也可以是不可見的波譜圖像(例如X射線圖像、射線圖像、超聲波圖像或紅外圖像等)。從圖像反映的客觀實體尺度看,可以小到電子顯微鏡圖像,大到航空照片、遙感圖像甚至天文望遠鏡圖像。這些來自不同信息源的圖像只要被變換為數字編碼形式後,均是用二維數組表示的灰度圖像(彩色圖像也是由灰度圖像組合成的,例如RGB圖像由紅、綠、藍三個灰度圖像組合而成)組合而成,因而均可用計算機來處理。即只要針對不同的圖像信息源,採取相應的圖像信息採集措施,圖像的數字處理方法適用於任何一種圖像。 4.靈活性高圖像處理大體上可分為圖像的像質改善、圖像分析和圖像重建三大部分,每一部分均包含豐富的內容。由於圖像的光學處理從原理上講只能進行線性運算,這極大地限制了光學圖像處理能實現的目標。而數字圖像處理不僅能完成線性運算,而且能實現非線性處理,即凡是可以用數學公式或邏輯關系來表達的一切運算均可用數字圖像處理實現。
數字圖像處理的應用
圖像是人類獲取和交換信息的主要來源,因此,圖像處理的應用領域必然涉及到人類生活和工作的方方面面。隨著人類活動范圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。 1)航天和航空技術方面的應用數字圖像處理技術在航天和航空技術方面的應用,除了上面介紹的JPL對月球、火星照片的處理之外,另一方面的應用是在飛機遙感和衛星遙感技術中。許多國家每天派出很多偵察飛機對地球上有興趣的地區進行大量的空中攝影。對由此得來的照片進行處理分析,以前需要僱用幾千人,而現在改用配備有高級計算機的圖像處理系統來判讀分析,既節省人力,又加快了速度,還可以從照片中提取人工所不能發現的大量有用情報。從60年代末以來,美國及一些國際組織發射了資源遙感衛星(如LANDSAT系列)和天空實驗室(如SKYLAB),由於成像條件受飛行器位置、姿態、環境條件等影響,圖像質量總不是很高。因此,以如此昂貴的代價進行簡單直觀的判讀來獲取圖像是不合算的,而必須採用數字圖像處理技術。如LANDSAT系列陸地衛星,採用多波段掃描器(MSS),在900km高空對地球每一個地區以18天為一周期進行掃描成像,其圖像解析度大致相當於地面上十幾米或100米左右(如1983年發射的LANDSAT-4,解析度為30m)。這些圖像在空中先處理(數字化,編碼)成數字信號存入磁帶中,在衛星經過地面站上空時,再高速傳送下來,然後由處理中心分析判讀。這些圖像無論是在成像、存儲、傳輸過程中,還是在判讀分析中,都必須採用很多數字圖像處理方法。現在世界各國都在利用陸地衛星所獲取的圖像進行資源調查(如森林調查、海洋泥沙和漁業調查、水資源調查等),災害檢測(如病蟲害檢測、水火檢測、環境污染檢測等),資源勘察(如石油勘查、礦產量探測、大型工程地理位置勘探分析等),農業規劃(如土壤營養、水份和農作物生長、產量的估算等),城市規劃(如地質結構、水源及環境分析等)。我國也陸續開展了以上諸方面的一些實際應用,並獲得了良好的效果。在氣象預報和對太空其它星球研究方面,數字圖像處理技術也發揮了相當大的作用。 2)生物醫學工程方面的應用數字圖像處理在生物醫學工程方面的應用十分廣泛,而且很有成效。除了上面介紹的CT技術之外,還有一類是對醫用顯微圖像的處理分析,如紅細胞、白細胞分類,染色體分析,癌細胞識別等。此外,在X光肺部圖像增晰、超聲波圖像處理、心電圖分析、立體定向放射治療等醫學診斷方面都廣泛地應用圖像處理技術。 3)通信工程方面的應用當前通信的主要發展方向是聲音、文字、圖像和數據結合的多媒體通信。具體地講是將電話、電視和計算機以三網合一的方式在數字通信網上傳輸。其中以圖像通信最為復雜和困難,因圖像的數據量十分巨大,如傳送彩色電視信號的速率達100Mbit/s以上。要將這樣高速率的數據實時傳送出去,必須採用編碼技術來壓縮信息的比特量。在一定意義上講,編碼壓縮是這些技術成敗的關鍵。除了已應用較廣泛的熵編碼、DPCM編碼、變換編碼外,目前國內外正在大力開發研究新的編碼方法,如分行編碼、自適應網路編碼、小波變換圖像壓縮編碼等。 4)工業和工程方面的應用在工業和工程領域中圖像處理技術有著廣泛的應用,如自動裝配線中檢測零件的質量、並對零件進行分類,印刷電路板疵病檢查,彈性力學照片的應力分析,流體力學圖片的阻力和升力分析,郵政信件的自動分揀,在一些有毒、放射性環境內識別工件及物體的形狀和排列狀態,先進的設計和製造技術中採用工業視覺等等。其中值得一提的是研製具備視覺、聽覺和觸覺功能的智能機器人,將會給工農業生產帶來新的激勵,目前已在工業生產中的噴漆、焊接、裝配中得到有效的利用。 5)軍事公安方面的應用在軍事方面圖像處理和識別主要用於導彈的精確末制導,各種偵察照片的判讀,具有圖像傳輸、存儲和顯示的軍事自動化指揮系統,飛機、坦克和軍艦模擬訓練系統等;公安業務圖片的判讀分析,指紋識別,人臉鑒別,不完整圖片的復原,以及交通監控、事故分析等。目前已投入運行的高速公路不停車自動收費系統中的車輛和車牌的自動識別都是圖像處理技術成功應用的例子。 6)文化藝術方面的應用目前這類應用有電視畫面的數字編輯,動畫的製作,電子圖像游戲,紡織工藝品設計,服裝設計與製作,發型設計,文物資料照片的復制和修復,運動員動作分析和評分等等,現在已逐漸形成一門新的藝術--計算機美術。