『壹』 Camera tuning工程師到底是怎麼樣的工作
樓主你好,我是做了4年多的camera tuning Engineer,目前安卓智能手機行業包括高通,MTK,展訊,intel(最近宣布放棄此業務了),平板如全志,瑞星微等平台都需要針對camera調試的人員;
跟以前camera CMOS感光晶元的isp集成在晶元端不一樣(此類soc camera 的tuning工作基本由camera晶元V廠支持,如索尼,三星,OV,國內廠家主要集中在低端的格科微,思比科),現在camera的感光晶元的isp都集成在平台端了(只輸出raw格式圖像,再經平台isp處理成yuv格式),這樣平台廠商開發的調試工具對於tuning人員來說就方便許多,手機終端,模組廠,方案公司,晶元商都可以較快的學習tuning上手,但是要精通還是要時間經驗積累的;
說完背景,那麼現在主要說說Camera tuning工程師平常主要做的,對於一般的客戶,都有自己的客觀和主觀效果的測試標准,你的最終目標就是調試的camera的拍照功能和效果達到測試標准讓客戶滿意;
一般都是先調試客觀,這個比較快,基本按照平台調試工具的流程走一下,在稍微調整基本都沒什麼問題,參數發給客戶用圖像測試軟體測試相關客觀指標,主流的有imatest(客戶有自己的要求有時候),客觀調試後就是主觀調試,所謂主觀,就是各有所好,有的希望清晰點,噪點沒那麼重要,有的希望膚色白點好看重要,有的覺得真實重要;一般客戶都會提供對比參考機器,網對比機器的方向調,客戶會測試很多實際場景,從顏色,曝光亮度,細節清晰度等各方面與參考機對比,最終評審通過結果,當然這是個反復非過程,反復調試,測試;
調試測試的一些主要項目包括但不限於lsc均勻度,白平衡awb,色彩還原ccm,動態范圍gamma,清晰度解析度等;
總的來說camera tuning Engineer不太需要很多特別專業的知識基礎,但是需要好學,因為他涉及很廣的知識范圍,光學,cmos半導體,色彩,圖像處理等基礎知識,一般兩三年後很好找工作一般的公司都會要,運氣好的話三年後的薪水在12-15K左右,視情況而定有的20K也有,總之還是比較有前景的一個方向吧,比較攝像頭這個東西現在是必不可少的;
中午沒吃飯一個字一個字碼的,忘樓主採納
『貳』 演算法工程師的就業前景如何
人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。
『叄』 環保工程師的主要工作是什麼發展前景如何
環保工程師的主要工作內容:
1、識別獲取適用的環境法律法規及其它要求,並貫徹落實;進行法律法規合規性評價。
2、負責環境保護和水土保持的教育培訓、信息交流工作。
3、負責環保水保記錄資料的管理。
4、進行環境審計監察,作出環境評估,多所發現的環境問題提出治理建議。
5、組織、督促落實各項應急准備工作,對發生的環境污染事故要及時向上級領導、上級主管部門和當地有關部門報告;參加上一級單位組織的檢查和事故調查工作;落實事故處置方案的實施。
環保工程師的發展前景:
隨著人類生活水平的不斷改善,對環境質量的關注與要求逐步提高。環保工程師的重要性不斷凸顯出來!注冊環保工程師的待遇必然也會逐步提高!
預計5~10年內注冊環保工程師的年薪將上升到10-15萬左右。
執業范圍:
(一)環保專業工程設計;
(二)環保專業工程技術咨詢;
(三)環保專業工程設備招標、采購咨詢;
(四)環保專業工程的項目管理;
(五)對本專業設計項目的施工進行指導和監督;
『肆』 請問做聲學演算法工程師有前景嗎
聲學演算法工程師是很有前景的職業,而且應用廣泛,包括醫療、國防、建築、科技等等,屬於高新職業,月薪在15000以上,並且工作經驗越長工資越高,最主要的是你有興趣,當然更好!
『伍』 數字圖像處理的發展趨勢
數字圖像處理(digital image processing)是用計算機對圖像信息進行處理的一門技術,使利用計算機對圖像進行各種處理的技術和方法。
20世紀20年代,圖像處理首次得到應用。20世紀60年代中期,隨電子計算機的發展得到普遍應用。60年代末,圖像處理技術不斷完善,逐漸成為一個新興的學科。利用數字圖像處理主要是為了修改圖形,改善圖像質量,或是從圖像中提起有效信息,還有利用數字圖像處理可以對圖像進行體積壓縮,便於傳輸和保存。數字圖像處理主要研究以下內容:傅立葉變換、小波變換等各種圖像變換;對圖像進行編碼和壓縮;採用各種方法對圖像進行復原和增強;對圖像進行分割、描述和識別等。隨著技術的發展,數字圖像處理主要應用於通訊技術、宇宙探索遙感技術和生物工程等領域。
數字圖像處理因易於實現非線性處理,處理程序和處理參數可變,故是一項通用性強,精度高,處理方法靈活,信息保存、傳送可靠的圖像處理技術。主要用於圖像變換、量測、模式識別、模擬以及圖像產生。廣泛應用在遙感、宇宙觀測、影像醫學、通信、刑偵及多種工業領域。
遙感影像數字圖像處理的內容主要有:①圖像恢復。即校正在成像、記錄、傳輸或回放過程中引入的數據錯誤、雜訊與畸變。包括輻射校正、幾何校正等;②數據壓縮。以改進傳輸、存儲和處理數據效率;③影像增強。突出數據的某些特徵,以提高影像目視質量。包括彩色增強、反差增強、邊緣增強、密度分割、比值運算、去模糊等;④信息提取。從經過增強處理的影像中提取有用的遙感信息。包括採用各種統計分析、集群分析、頻譜分析等自動識別與分類。通常利用專用數字圖像處理系統來實現,且依據目的不同採用不同演算法和技術。
數字圖像處理概述
數字圖像處理發展概況
數字圖像處理(Digital Image Processing)又稱為計算機圖像處理,它是指將圖像信號轉換成數字信號並利用計算機對其進行處理的過程。數字圖像處理最早出現於20世紀50年代,當時的電子計算機已經發展到一定水平,人們開始利用計算機來處理圖形和圖像信息。數字圖像處理作為一門學科大約形成於20世紀60年代初期。早期的圖像處理的目的是改善圖像的質量,它以人為對象,以改善人的視覺效果為目的。圖像處理中,輸入的是質量低的圖像,輸出的是改善質量後的圖像,常用的圖像處理方法有圖像增強、復原、編碼、壓縮等。首次獲得實際成功應用的是美國噴氣推進實驗室(JPL)。他們對航天探測器徘徊者7號在1964年發回的幾千張月球照片使用了圖像處理技術,如幾何校正、灰度變換、去除雜訊等方法進行處理,並考慮了太陽位置和月球環境的影響,由計算機成功地繪制出月球表面地圖,獲得了巨大的成功。隨後又對探測飛船發回的近十萬張照片進行更為復雜的圖像處理,以致獲得了月球的地形圖、彩色圖及全景鑲嵌圖,獲得了非凡的成果,為人類登月創舉奠定了堅實的基礎,也推動了數字圖像處理這門學科的誕生。在以後的宇航空間技術,如對火星、土星等星球的探測研究中,數字圖像處理技術都發揮了巨大的作用。數字圖像處理取得的另一個巨大成就是在醫學上獲得的成果。1972年英國EMI公司工程師Housfield發明了用於頭顱診斷的X射線計算機斷層攝影裝置,也就是我們通常所說的CT(Computer Tomograph)。CT的基本方法是根據人的頭部截面的投影,經計算機處理來重建截面圖像,稱為圖像重建。1975年EMI公司又成功研製出全身用的CT裝置,獲得了人體各個部位鮮明清晰的斷層圖像。1979年,這項無損傷診斷技術獲得了諾貝爾獎,說明它對人類作出了劃時代的貢獻。與此同時,圖像處理技術在許多應用領域受到廣泛重視並取得了重大的開拓性成就,屬於這些領域的有航空航天、生物醫學工程、工業檢測、機器人視覺、公安司法、軍事制導、文化藝術等,使圖像處理成為一門引人注目、前景遠大的新型學科。隨著圖像處理技術的深入發展,從70年代中期開始,隨著計算機技術和人工智慧、思維科學研究的迅速發展,數字圖像處理向更高、更深層次發展。人們已開始研究如何用計算機系統解釋圖像,實現類似人類視覺系統理解外部世界,這被稱為圖像理解或計算機視覺。很多國家,特別是發達國家投入更多的人力、物力到這項研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的視覺計算理論,這個理論成為計算機視覺領域其後十多年的主導思想。圖像理解雖然在理論方法研究上已取得不小的進展,但它本身是一個比較難的研究領域,存在不少困難,因人類本身對自己的視覺過程還了解甚少,因此計算機視覺是一個有待人們進一步探索的新領域。
數字圖像處理主要研究的內容
數字圖像處理主要研究的內容有以下幾個方面: 1) 圖像變換由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用。 2) 圖像編碼壓縮圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。 3) 圖像增強和復原圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立"降質模型",再採用某種濾波方法,恢復或重建原來的圖像。 4) 圖像分割圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一。 5) 圖像描述圖像描述是圖像識別和理解的必要前提。作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。 6) 圖像分類(識別)圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視。
數字圖像處理的基本特點
(1)目前,數字圖像處理的信息大多是二維信息,處理信息量很大。如一幅256×256低解析度黑白圖像,要求約64kbit的數據量;對高解析度彩色512×512圖像,則要求768kbit數據量;如果要處理30幀/秒的電視圖像序列,則每秒要求500kbit~22.5Mbit數據量。因此對計算機的計算速度、存儲容量等要求較高。(2)數字圖像處理佔用的頻帶較寬。與語言信息相比,佔用的頻帶要大幾個數量級。如電視圖像的帶寬約5.6MHz,而語音帶寬僅為4kHz左右。所以在成像、傳輸、存儲、處理、顯示等各個環節的實現上,技術難度較大,成本亦高,這就對頻帶壓縮技術提出了更高的要求。(3)數字圖像中各個像素是不獨立的,其相關性大。在圖像畫面上,經常有很多像素有相同或接近的灰度。就電視畫面而言,同一行中相鄰兩個像素或相鄰兩行間的像素,其相關系數可達0.9以上,而相鄰兩幀之間的相關性比幀內相關性一般說還要大些。因此,圖像處理中信息壓縮的潛力很大。(4)由於圖像是三維景物的二維投影,一幅圖象本身不具備復現三維景物的全部幾何信息的能力,很顯然三維景物背後部分信息在二維圖像畫面上是反映不出來的。因此,要分析和理解三維景物必須作合適的假定或附加新的測量,例如雙目圖像或多視點圖像。在理解三維景物時需要知識導引,這也是人工智慧中正在致力解決的知識工程問題。(5)數字圖像處理後的圖像一般是給人觀察和評價的,因此受人的因素影響較大。由於人的視覺系統很復雜,受環境條件、視覺性能、人的情緒愛好以及知識狀況影響很大,作為圖像質量的評價還有待進一步深入的研究。另一方面,計算機視覺是模仿人的視覺,人的感知機理必然影響著計算機視覺的研究。例如,什麼是感知的初始基元,基元是如何組成的,局部與全局感知的關系,優先敏感的結構、屬性和時間特徵等,這些都是心理學和神經心理學正在著力研究的課題。
數字圖像處理的優點
1. 再現性好數字圖像處理與模擬圖像處理的根本不同在於,它不會因圖像的存儲、傳輸或復制等一系列變換操作而導致圖像質量的退化。只要圖像在數字化時准確地表現了原稿,則數字圖像處理過程始終能保持圖像的再現。 2.處理精度高按目前的技術,幾乎可將一幅模擬圖像數字化為任意大小的二維數組,這主要取決於圖像數字化設備的能力。現代掃描儀可以把每個像素的灰度等級量化為16位甚至更高,這意味著圖像的數字化精度可以達到滿足任一應用需求。對計算機而言,不論數組大小,也不論每個像素的位數多少,其處理程序幾乎是一樣的。換言之,從原理上講不論圖像的精度有多高,處理總是能實現的,只要在處理時改變程序中的數組參數就可以了。回想一下圖像的模擬處理,為了要把處理精度提高一個數量級,就要大幅度地改進處理裝置,這在經濟上是極不合算的。 3.適用面寬圖像可以來自多種信息源,它們可以是可見光圖像,也可以是不可見的波譜圖像(例如X射線圖像、射線圖像、超聲波圖像或紅外圖像等)。從圖像反映的客觀實體尺度看,可以小到電子顯微鏡圖像,大到航空照片、遙感圖像甚至天文望遠鏡圖像。這些來自不同信息源的圖像只要被變換為數字編碼形式後,均是用二維數組表示的灰度圖像(彩色圖像也是由灰度圖像組合成的,例如RGB圖像由紅、綠、藍三個灰度圖像組合而成)組合而成,因而均可用計算機來處理。即只要針對不同的圖像信息源,採取相應的圖像信息採集措施,圖像的數字處理方法適用於任何一種圖像。 4.靈活性高圖像處理大體上可分為圖像的像質改善、圖像分析和圖像重建三大部分,每一部分均包含豐富的內容。由於圖像的光學處理從原理上講只能進行線性運算,這極大地限制了光學圖像處理能實現的目標。而數字圖像處理不僅能完成線性運算,而且能實現非線性處理,即凡是可以用數學公式或邏輯關系來表達的一切運算均可用數字圖像處理實現。
數字圖像處理的應用
圖像是人類獲取和交換信息的主要來源,因此,圖像處理的應用領域必然涉及到人類生活和工作的方方面面。隨著人類活動范圍的不斷擴大,圖像處理的應用領域也將隨之不斷擴大。 1)航天和航空技術方面的應用數字圖像處理技術在航天和航空技術方面的應用,除了上面介紹的JPL對月球、火星照片的處理之外,另一方面的應用是在飛機遙感和衛星遙感技術中。許多國家每天派出很多偵察飛機對地球上有興趣的地區進行大量的空中攝影。對由此得來的照片進行處理分析,以前需要僱用幾千人,而現在改用配備有高級計算機的圖像處理系統來判讀分析,既節省人力,又加快了速度,還可以從照片中提取人工所不能發現的大量有用情報。從60年代末以來,美國及一些國際組織發射了資源遙感衛星(如LANDSAT系列)和天空實驗室(如SKYLAB),由於成像條件受飛行器位置、姿態、環境條件等影響,圖像質量總不是很高。因此,以如此昂貴的代價進行簡單直觀的判讀來獲取圖像是不合算的,而必須採用數字圖像處理技術。如LANDSAT系列陸地衛星,採用多波段掃描器(MSS),在900km高空對地球每一個地區以18天為一周期進行掃描成像,其圖像解析度大致相當於地面上十幾米或100米左右(如1983年發射的LANDSAT-4,解析度為30m)。這些圖像在空中先處理(數字化,編碼)成數字信號存入磁帶中,在衛星經過地面站上空時,再高速傳送下來,然後由處理中心分析判讀。這些圖像無論是在成像、存儲、傳輸過程中,還是在判讀分析中,都必須採用很多數字圖像處理方法。現在世界各國都在利用陸地衛星所獲取的圖像進行資源調查(如森林調查、海洋泥沙和漁業調查、水資源調查等),災害檢測(如病蟲害檢測、水火檢測、環境污染檢測等),資源勘察(如石油勘查、礦產量探測、大型工程地理位置勘探分析等),農業規劃(如土壤營養、水份和農作物生長、產量的估算等),城市規劃(如地質結構、水源及環境分析等)。我國也陸續開展了以上諸方面的一些實際應用,並獲得了良好的效果。在氣象預報和對太空其它星球研究方面,數字圖像處理技術也發揮了相當大的作用。 2)生物醫學工程方面的應用數字圖像處理在生物醫學工程方面的應用十分廣泛,而且很有成效。除了上面介紹的CT技術之外,還有一類是對醫用顯微圖像的處理分析,如紅細胞、白細胞分類,染色體分析,癌細胞識別等。此外,在X光肺部圖像增晰、超聲波圖像處理、心電圖分析、立體定向放射治療等醫學診斷方面都廣泛地應用圖像處理技術。 3)通信工程方面的應用當前通信的主要發展方向是聲音、文字、圖像和數據結合的多媒體通信。具體地講是將電話、電視和計算機以三網合一的方式在數字通信網上傳輸。其中以圖像通信最為復雜和困難,因圖像的數據量十分巨大,如傳送彩色電視信號的速率達100Mbit/s以上。要將這樣高速率的數據實時傳送出去,必須採用編碼技術來壓縮信息的比特量。在一定意義上講,編碼壓縮是這些技術成敗的關鍵。除了已應用較廣泛的熵編碼、DPCM編碼、變換編碼外,目前國內外正在大力開發研究新的編碼方法,如分行編碼、自適應網路編碼、小波變換圖像壓縮編碼等。 4)工業和工程方面的應用在工業和工程領域中圖像處理技術有著廣泛的應用,如自動裝配線中檢測零件的質量、並對零件進行分類,印刷電路板疵病檢查,彈性力學照片的應力分析,流體力學圖片的阻力和升力分析,郵政信件的自動分揀,在一些有毒、放射性環境內識別工件及物體的形狀和排列狀態,先進的設計和製造技術中採用工業視覺等等。其中值得一提的是研製具備視覺、聽覺和觸覺功能的智能機器人,將會給工農業生產帶來新的激勵,目前已在工業生產中的噴漆、焊接、裝配中得到有效的利用。 5)軍事公安方面的應用在軍事方面圖像處理和識別主要用於導彈的精確末制導,各種偵察照片的判讀,具有圖像傳輸、存儲和顯示的軍事自動化指揮系統,飛機、坦克和軍艦模擬訓練系統等;公安業務圖片的判讀分析,指紋識別,人臉鑒別,不完整圖片的復原,以及交通監控、事故分析等。目前已投入運行的高速公路不停車自動收費系統中的車輛和車牌的自動識別都是圖像處理技術成功應用的例子。 6)文化藝術方面的應用目前這類應用有電視畫面的數字編輯,動畫的製作,電子圖像游戲,紡織工藝品設計,服裝設計與製作,發型設計,文物資料照片的復制和修復,運動員動作分析和評分等等,現在已逐漸形成一門新的藝術--計算機美術。
『陸』 演算法工程師未來的發展方向35歲以後呢
技術能力是技術人員的立身之本。站在演算法的角度,這里的技術能力主要是演算法應用能力,包括閱讀論文、演算法實現、工程化以及相關文檔的撰寫。
技術人員常見的一個認知誤區是技術大於一切,認為只要技術做好了,就應該得到認可或獎勵。事實上,技術在大多數情況下只是商業中的一環,技術做得好不能確保商業上的成功。
以自營電商為例,技術人員做一款功能強大的購物APP不難,但同時必須有商品研發、供應鏈和物流配送才能完成一個極小的商業閉環。此外,要想商品賣得好得有市場和運營團隊一起發力。在這樣的背景下,購物APP只是諸多商業環節中的一個節點,因此僅僅依賴軟體研發技術顯然不足以實現商業上的成功。好的技術團隊必須始終圍繞各商業環節,有能力定位問題,並研發工具有效地解決問題。
作為演算法工程師,在立項和需求評審時,需要有能力評估項目為業務帶來的價值以及演算法在整個項目中的價值,從而避免把精力浪費在「投入產出比」不高的事情上。如何做到這一步呢?除了有扎實的技術,還需要深入了解業務。
需要了解的業務知識包括(但不限於)商業模式、業務流程、業務限制以及與當前業務相關的技術等等。演算法工程師了解業務的另一個好處是洞察需求,解決問題的同時可以發現更多的技術問題,從而推動業務的進步。
技術人員最難跨越的是從技術能力到業務能力的提升。有兩方面原因:一是技術人員主觀上不太願意處理業務問題(扯皮的事情較多);二是技術人員晉升和跳槽時主要被考察的還是技術,因此業務能力在有些技術人員看來短期的收益不高。
架構能力是一種解決復雜問題的能力,它需要考慮業務的現狀和未來,把復雜問題分解成簡單問題,然後給出解決方案。與軟體架構相比,演算法架構更偏向業務,不僅要對業務進行建模和抽象,還要考慮工程實現,以便技術方案在實際業務中落地。因此,良好的技術能力和業務能力是演算法架構能力的基礎。
演算法相關的技術項目可能涉及到與其它技術工種的配合,例如:產品經理、數據分析、數據開發、前端、後端、測試、運維等。因此,演算法工程師設計的技術方案應該考慮到演算法模塊與其它技術模塊的解耦與協同。
演算法工程師做解決方案時應該從全局出發:一是技術上不僅考慮演算法而且還要考慮工程實現和產品化(切忌手裡有錘子,看什麼都是釘子的想法);二是從整體業務的角度考慮項目帶來的收益。例如,假設推薦系統的重構可以帶來推薦模塊的轉化率提升。那麼這件事情一定值得做嗎?我們還應該評估這個提升效果對大盤利潤的影響。如果對大盤利潤的提升有限,或許應該把精力投入在更有價值的項目中。
『柒』 演算法工程師這個職位未來發展有前途嗎
現在計算機應用方面的工作是最好找的,而且在一些大城市比如上海,南京等軟體研發部的月薪是非常高的。如果立志掌握好幾門熱門的計算機語言,對軟體專業的大學生來說是非常好的出路。
現在最熱門的計算機語言包括c++,c#,java,.net等,這四種語言方面的人才是大公司最青睞的對象。
如果立志做程序研發,作為大三的學生,同時應該把數據結構,編譯原理,演算法設計技巧等學科掌握牢固,這將為你今後的事業打下夯實的基礎。