導航:首頁 > 項目工程 > 模式識別演算法工程師

模式識別演算法工程師

發布時間:2021-08-17 07:41:55

⑴ 圖像演算法工程師待遇高嗎

的確算得上是一個入演算法坑的黃金時間,曾經的條條大路通 CS 變成了條條大路通 AI,不管你曾經讀的是物理還是生物,化學還是數學,只要你會 Python,會統計學基礎,那時的我都會推薦你們來試一試加入演算法這個坑,我也抱著體驗的心態開了幾次知乎 Live 都講了一些關於演算法入門相關的課,按那時候來講,只要你「思路正常,邏輯清晰,吃苦耐勞,肯學習」,在演算法這個坑裡摸滾帶爬四五年到現在,你要是在大廠,基本上都能拿到這個數,放一張最近的圖可供參考。

圖片引用至 @曾加 ,可以參考這位大佬的最新文章:

曾加:最新!互聯網大廠各職級薪資對應關系圖(2020年初)

zhuanlan.hu.com
圖標
以我熟悉的阿里為例,文中所說的二三十人團隊,那基本上就一個P8主管,下面再拆成2-3個小組,每個小組有一個P7/8帶隊,帶著一群P5-P7幹活。這就基本構成了阿里的一個最小組織單元,每年的績效和獎金大體上都是由這位P8主管決定的,所以我們一般尊稱為老闆……

扯遠了,其實我想表達一點,如果現在再有人來問我,學了 Python 之後怎麼樣加入演算法坑比較好,我的建議是不加入。

我們常說的演算法,本質上是統計,而統計是基於大數據的。目前能真正擁有大數據基建的企業其實並不多,能通過演算法產出新價值的就更少,所以看起來搞 AI 的風風火火,其實大部分都是投資人含淚投的錢,背後能賺錢的少之又少,即便是在大廠也不例外。

所以一個目前仍不賺錢的行業,沖著心中偉大的理想和抱負,會像招開發那樣花重金吸納大批人才嗎?答案明顯為否,其實只需要花重金留住頂尖的演算法人才即可,調包調參的 AI 選手無論何時都可以招得到,而目前大部分通過自學、培訓機構出來的 AI 人才,就是這樣的 tool boy。

巧的是,曾經我也是這樣的 AI 選手,但誰叫我運氣好,混得好不如混得早,現在轉去數據分析那可就是降維打擊了(手動狗頭

最後再概括一下,今年是 2020 年,如果想從事演算法和數據行業,建議先讀一個相關專業的碩士,比如數據挖掘、圖像識別等,且學校不能太非主流,不然可能簡歷面都過不了。

⑵ 圖像演算法工程師去哪個企業比較好

兩者其實差別都不算很大,從專業本身來說,模式識別研發就比如汽車的車牌,你怎麼去識別,圖像演算法主要研究目的就是比如車牌你怎麼讓他更清楚地被你採集後得到有用的信息,還原圖片的原來面目等。都是演算法類的研究,當然演算法也是離不開程序的

⑶ 演算法工程師是計算什麼的

看行業
圖像演算法:
崗位職責 1、負責模式識別等相關演算法的研究,設計,實現和優化; 2、深入了解深度學習、機器學習,了解TensorFlow MxNet Caffe等主流深度學習框架,能快速驗證演算法模型; 3、深入了解CNN,RCNN,FastRCNN,VGG,LeNet,ResNet等主流神經網路模型,並能進行根據需求進行相應的優化,有效提高演算法的效率和精度; 4、深入了解物體識別、人臉識別、人體姿態識別、手勢識別等相關演算法,針對相關領域演算法進行研究、驗證、實現與優化; 5、針對不同的系統和硬體平台,對各類演算法進行移植和優化。
金融:

職位描述:
1.有扎實的演算法理論功底,有NLP,圖像識別,分類,檢測方面,視頻等相關項目經驗優先等; 2.熟悉常用深度學習編程語言; 3.熟悉深度學習的框架TensorFlow,caffe,pytorch了解YOLOSSDFASTERRCNN等目標檢測演算法,熟悉Resnetinceptionvgg16mobilenet等深度學習網路,熟悉網路的調參及模型訓練方式優先; 4.熟悉linux平台及Android平台,有深度學習模型移植手機端實際經驗的優先; 5.具有優秀的分析和解決問題能力,快速學習新知識能力,具有團隊合作精神

⑷ 山東魯能智能技術有限公司模式識別演算法工程師待遇怎麼樣啊公司是國企嗎謝謝啊

我就是這個公司的,待遇在濟南還可以。公司是國企,但是你進來屬於勞務派遣,對個人來說和民營沒區別,公司200多人就3個人屬於國網的編制,其它都是勞務派遣。現在的制度都是這樣,國企編制你就別想了

⑸ 演算法工程師未來的發展方向35歲以後呢

技術能力是技術人員的立身之本。站在演算法的角度,這里的技術能力主要是演算法應用能力,包括閱讀論文、演算法實現、工程化以及相關文檔的撰寫。
技術人員常見的一個認知誤區是技術大於一切,認為只要技術做好了,就應該得到認可或獎勵。事實上,技術在大多數情況下只是商業中的一環,技術做得好不能確保商業上的成功。
以自營電商為例,技術人員做一款功能強大的購物APP不難,但同時必須有商品研發、供應鏈和物流配送才能完成一個極小的商業閉環。此外,要想商品賣得好得有市場和運營團隊一起發力。在這樣的背景下,購物APP只是諸多商業環節中的一個節點,因此僅僅依賴軟體研發技術顯然不足以實現商業上的成功。好的技術團隊必須始終圍繞各商業環節,有能力定位問題,並研發工具有效地解決問題。
作為演算法工程師,在立項和需求評審時,需要有能力評估項目為業務帶來的價值以及演算法在整個項目中的價值,從而避免把精力浪費在「投入產出比」不高的事情上。如何做到這一步呢?除了有扎實的技術,還需要深入了解業務。
需要了解的業務知識包括(但不限於)商業模式、業務流程、業務限制以及與當前業務相關的技術等等。演算法工程師了解業務的另一個好處是洞察需求,解決問題的同時可以發現更多的技術問題,從而推動業務的進步。
技術人員最難跨越的是從技術能力到業務能力的提升。有兩方面原因:一是技術人員主觀上不太願意處理業務問題(扯皮的事情較多);二是技術人員晉升和跳槽時主要被考察的還是技術,因此業務能力在有些技術人員看來短期的收益不高。
架構能力是一種解決復雜問題的能力,它需要考慮業務的現狀和未來,把復雜問題分解成簡單問題,然後給出解決方案。與軟體架構相比,演算法架構更偏向業務,不僅要對業務進行建模和抽象,還要考慮工程實現,以便技術方案在實際業務中落地。因此,良好的技術能力和業務能力是演算法架構能力的基礎。
演算法相關的技術項目可能涉及到與其它技術工種的配合,例如:產品經理、數據分析、數據開發、前端、後端、測試、運維等。因此,演算法工程師設計的技術方案應該考慮到演算法模塊與其它技術模塊的解耦與協同。
演算法工程師做解決方案時應該從全局出發:一是技術上不僅考慮演算法而且還要考慮工程實現和產品化(切忌手裡有錘子,看什麼都是釘子的想法);二是從整體業務的角度考慮項目帶來的收益。例如,假設推薦系統的重構可以帶來推薦模塊的轉化率提升。那麼這件事情一定值得做嗎?我們還應該評估這個提升效果對大盤利潤的影響。如果對大盤利潤的提升有限,或許應該把精力投入在更有價值的項目中。

⑹ 演算法工程師 就業前景

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者Java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

⑺ 圖像演算法工程師的工作是什麼大恆圖像

兩者其實差別都不算很大,從專業本身來說,模式識別研發就比如汽車的車牌,你怎麼去識別,圖像演算法主要研究目的就是比如車牌你怎麼讓他更清楚地被你採集後得到有用的信息,還原圖片的原來面目等。都是演算法類的研究,當然演算法也是離不開程序的,如果你對軟體不敢新區,那麼這兩個專業都不是適合你。

⑻ 圖像處理與模式識別演算法工程師需要哪些基礎

圖像處理 模式識別 智能信息處理 視頻信息處理 信號與系統分析 軟體開發 資料庫 VC++ matlab

與模式識別演算法工程師相關的資料

熱點內容
蘇州假山景觀設計工程 瀏覽:862
哈爾濱工程造價招聘 瀏覽:937
建築工程土建勞務分包 瀏覽:632
道路監理工程師 瀏覽:476
安徽工程大學機電學院在本校嗎 瀏覽:370
河北工程大學保研率多少 瀏覽:287
有學質量工程師的書嗎 瀏覽:479
康樂縣建築工程公司 瀏覽:569
助理工程師二級 瀏覽:872
注冊安全工程師初級考試時間 瀏覽:901
食品科學與工程專業課題研究 瀏覽:881
工程造價圖紙建模 瀏覽:888
遼寧恆潤建設工程有限公司 瀏覽:93
實行施工總承包的工程項目 瀏覽:737
道路橋梁工程技術興趣愛好 瀏覽:316
密歇根理工大學電氣工程專業 瀏覽:388
廣西交通工程質量監督站 瀏覽:31
四川大學材料科學與工程學院考研參考書目 瀏覽:858
有線電視工程建設管理條例 瀏覽:270
雲南工程監理公司排名 瀏覽:673