Ⅰ 急求一篇8000字的與電子信息工程專業相關的英文文獻,要有文獻出處
直接去我空間看下載地址,拖拖的
Ⅱ 高分懸賞:急求電子信息專業用於畢業論文的英文文獻3000字中文翻譯 要求附帶英文原文
您可以親自挑選:
可以用關鍵詞檢索或根據專業、雜志名檢索。標題前面有個綠色的小方塊的文章可以瀏覽全文。參考資料:http://www.sciencedirect.com/
Ⅲ 英文論文參考文獻是什麼
留學生在參考文獻的列舉,或者可以說是陳列方面有比較多的標注方法,常見的有五種:Harvard
referencing
system哈佛文獻標記系統;CMS:Chicago
Manual
of
Style(CMS)芝加哥寫作和文獻標注系統;APA
Style:American
Psychological
Association美國心理學會寫作和文獻標記辦法;AMA:American
Medical
Association美國醫學會文獻標注系統;MLA:現代語言學會寫作和文獻標注系統。但是最常用的就是前兩種,今天來說一下哈佛文獻的注釋格式吧!
哈佛文獻注釋體系起源於美國,經過幾十年的發展已經成為一種國際性的學術規范,具備了靈活、簡潔、清楚的特點,對作者和讀者來說都較為方便。它也叫做作者-日期法,每一個引文,無論是直接還是間接都應該分別在兩處註明——在文中引用處註明,在全書或是全文最後的參考書目處註明。
1、在文中引用處注釋。當作者姓名在句子中自然出現,給出作者姓和出版年份,將出版年份在小括弧內;當作者姓名不在句子中自然出現時,姓和出版年份都放在括弧內;被引用的作者在同一年出現了兩部以上著作或發表了兩篇以上的爐溫,用小寫字母abc加以區別,放在年份後面;如果被引用著作有兩位作者,要講兩位作者的姓同時給出等。
2、在全書(文)後參考書目處注釋。所有參考書目以作者姓名的字母順序排列,一個作者有多本著作時,則按年份先後排列順序,一個作者一年內有多本著作出版或論文發表,在年份後按月份先後加小寫字母abc等加以區別。這樣排列的好處是:只有一個按字母順序排列的參考書目,便於讀者查閱;整個文檔不需要腳注;便於修改,即使是最後一刻要刪去或增加某條注釋,可隨時增刪,不需要重新排序;每個注釋只在參考書目中出現一次,而無論它在文中被引用過幾次。
Ⅳ 電子專業英語論文
This article described the three directions (before, left, right) ultrasonic ranging system is to understand the front of the robot, left and right environment to provide a movement away from the information. (Similar to GPS Positioning System)
A principle of ultrasonic distance measurement
1, the principle of piezoelectric ultrasonic generator
Piezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown in Figure 1, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two are not inter-electrode voltage, when the board received ultrasonic resonance, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.
2, the principle of ultrasonic distance measurement
Ultrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 2
Ultrasonic Ranging System for the Second Circuit Design
System is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2. Draw only the front range of the circuit wiring diagram, left and right in front of Ranging Ranging circuits and the same circuit, it is omitted.
1,40 kHz ultrasonic pulse generated with the launch
Ranging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following proceres to generate.
puzel: mov 14h, # 12h; ultrasonic firing continued 200ms
here: cpl p1.0; output 40kHz square wave
nop;
nop;
nop;
djnz 14h, here;
ret
Ranging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procere, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.
2, reception and processing of ultrasonic
Used to receive the first launch of the first pair UCM40R, the ultrasonic pulse molation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the output from the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.
Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:
receive1: push psw
push acc
clr ex1; related external interrupt 1
jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuit
jnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routine
return: SETB EX1; open external interrupt 1
pop? acc
pop? psw
reti
right: ...?; right location entrance circuit interrupt service routine
? Ajmp? Return
left: ...; left Ranging entrance circuit interrupt service routine
? Ajmp? Return
4, the calculation of ultrasonic propagation time
When you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:
RECEIVE0: PUSH PSW
PUSH ACC
CLR EX0; related external interrupt 0
? MOV R7, TH0; read the time value
MOV R6, TL0?
CLR C
MOV A, R6
SUBB A, # 0BBH; calculate the time difference
MOV 31H, A; storage results
MOV A, R7
SUBB A, # 3CH
MOV 30H, A?
SETB EX0; open external interrupt 0
POP ACC?
POP PSW
RETI
Fourth, the ultrasonic ranging system software design
Software is divided into two parts, the main program and interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.
Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.
V. CONCLUSIONS
Required measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reprocibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.
Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, CX20106 integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency
Ⅳ 電子工程專業英文期刊有哪些
你可以到佰騰科研導航站里找,裡面的收錄了國內外權威期刊,非常專業。
Ⅵ 跪求電氣專業英文論文或英文參考文獻
是這個樣子的嗎?如有需要回復我
水 泥 科 技
SCI CE jD 佃C )I JC)GY OF CE 任NT
1 概述
一起變壓器差動保護誤動作的案例分析
孫 峻
(合肥水泥研究設計院 230051)
智利拉法基二十萬噸水泥粉磨生產線是我院首
個在美洲地區開展的EP項目,此項目的成敗關系
到我院能否開拓美洲市場,是我院實施美洲開發戰
略的關鍵。此項目從開始的設計到設備的選型都是
國內最先進的,技術含量也是最高的。為此我院的工
程技術人員付出了艱辛的汗水,但是現場電氣方面
還是出現了一些技術問題。我院工程技術人員非常
重視出現的問題,沒有絲毫懈怠,在智利技術人員的
大力配合下和我院的工程技術人員努力下,電氣問
題終於得到圓滿的解決,受到了業主的好評。
筆者在此僅將智利拉法基現場出現的變壓器微
機差動保護誤動作問題例舉出來,加以技術分析,謹
供大家參考。
2 電氣故障的現象
智利拉法基二十萬噸水泥粉磨生產線的供電是
採取23/6.6kV& 23/0.4kV兩路供電方式,兩台主
變的技術參數見表1、表2。
表1 1#主變
變壓器型號 S11一ⅣB一3150/23
有載調壓 23±2x2.5
變壓器接線方式 Dynl1
變壓器容量 3150t
電壓比 23/6.6kV
表2 2#主變
變壓器型號 Sl1一MB一2000/23
有載調壓 23±2x2.5
變壓器接線方式 Dynl1
變壓器容量 2000kI
電壓比 23/0.4kV
主變的主保護是微機差動保護(型號:
R圈1543),R 43型號的微機綜保是ABB公司近
期新推向世面的一種新型綜保,其功能非常強大,自
帶運行軟體和程序的自主編程,為用戶提供了方便。
經過半年的安裝於2008年1月20日試投入運行,
兩台主變空載運行一切正常。但是當兩台主變在帶
上負荷生產以後,兩台主變高壓側相繼出現跳閘現
象,ABB微機綜保顯示微機差動保護動作,顯然這
樣將嚴重影響全廠的生產,這一問題必須盡快得到
解決。
3 故障的檢查步驟和技術分析
(1)首先檢查高低壓側電流互感器相序是否一
致,在電源的相序是正序的情況下,只要合理的選擇
變比以及微機相位補償,流過差動電流是很小的,而
負序的情況就不一樣了,高壓側電流互感器副邊輸
出的電流和和低壓側電流互感器副邊輸出的電流相
位相差60。,因此就能引起差動保護誤動作,但是經
過現場認真的檢查電源的相序是正確的。
(2)檢查變壓器兩端的電流互感器的變比和綜
保的保護值是否相匹配以及重新校驗且核算保護定
一35 —
2008.N93
水 泥 科 技
SCIENCEAND )IoGY OFC
值,沒有發現任何問題。
(3)檢查電流互感器二次側是否斷線,原因是
在變壓器有一定負荷時,若電流互感器二次迴路斷
線,將可能造成差動保護起動元件、差動元件動作,
從而引起差動保護誤動作。檢查結果是沒有發現上
述的問題。
(4)接著,所有的技術人員開始懷疑變壓器內
部是否有故障,經過對兩台主變的性能測試和出廠
值的校驗,檢測的數據和變壓器出廠時幾乎一樣。
(5)根據ABB(RKI'543)的微機綜保技術資料,
檢查ABB(R踴43)的微機綜保的接線端子(變壓器
兩側電流互感器接到綜保的電流接線端子位置是否
正確),發現變壓器兩側電流互感器與綜保接線有
誤,廠家把變壓器高壓側的電流互感器和低壓側的
電流互感器的電流信號接到綜保的位置接反了,在
接線調整正確以後,發現差動保護跳閘的現象依然
存在。
此時,現場的問題顯得撲朔迷離,但是中智雙方
工程技術人員沒有泄氣,看圖紙、查資料,終於找到
了問題的痼疾。原來是互感器的二次側同極性端子
接錯導致差動保護誤動作,因為這樣的接線方式會
導致兩側電流互感器的二次電流在差動迴路中方向
相同,微機綜保流過的電流為兩相電流之和,在變壓
器空載運行時故障一般不容易反映不出來,只有當
變壓器帶上一定負荷時,差動保護就會動作。重新接
線後兩台變壓器帶負荷運行一切正常。
圖1
這樣,在雙方技術人員的艱苦努力下,這一起變
一36 一
壓器差動保護誤動作終於水落石出,故障得到了圓
滿的解決,而縈繞在工程技術人員心頭久久不能散
去的迷霧也漸漸消融,化作工程圓滿完成的一場喜
雨。圖1是差動保護的正確和錯誤的接線。
4 體會與建議
4.1 故障的分析與排除
通過對差動保護誤動作故障的分析和故障排除
整個過程,闡述了一些正常運行時(系統無故障及無
沖擊)差動保護誤動作的原因,但是除了上述的原因
還有一些因素也可能導致變壓器正常運行時差動保
護誤動作,主要現象為:(1)電流互感器二次迴路中
接線端子螺絲松動,使二次迴路連線接觸不良或短
時開路。(2)電流互感器二次迴路中一相接觸不良,
在接觸不良處產生電弧造成單相接地或兩相之間的
接地(電流互感器二次迴路短路)。(3)電流互感器
二次迴路電纜芯線外層絕緣損壞或損傷,在運行中
由於震動造成接地短路。(4)差動電流互感器二次
迴路多點接地,而且接地點不在同一處,造成接地點
之間電位差太大,使差動元件產生差流導致差動誤
動作(雷雨季節較多)。
4.2 建議
為了提高差動保護的動作可靠性應做好以下工
作:(1)嚴格檢查電流互感器的極性;如果電流互感
器極性在接線時接錯了,那麼將它用在保護迴路中,
將會引起保護的誤動作,如果用在儀表測量迴路中,
會影響計量的准確性。(2)嚴防電流互感器二次回
路接觸不良和開路的現象;加強對差動迴路差流運
行監視以及對保護裝置的維護。在變壓器和保護裝
置安裝調試以後,應仔細的檢查電流互感器二次回
路,擰緊二次迴路接線端子螺絲並且用彈簧墊進行
加固。(3)嚴格執行規范要求;所有電氣上有連接的
差動電流互感器二次迴路只能有一個公共接地點,
並且該接地點位置應在保護盤上。(4)確保差動電
流互感器二次電纜芯線之間和各芯線對地絕緣;對
於變壓器初次運行和高壓設備檢修後的運行,要用
1000V絕緣電阻表測量電流互感器二次電纜芯線之
間和各芯線對地絕緣,使之符合電氣規程的要求;另
外選擇電流互感器二次電纜的截面應不小於4mm 。
Ⅶ 電子類英語論文
A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems要該文全文,更換別的論文,或要中英文對照都可以找我Mahim Ranjan, Member, IEEE, and Lawrence E. Larson, Fellow, IEEE0Abstract—This paper presents an RF receiver front-end for MB-OFDM-based ultra-wideband (UWB) systems. The receiver occupies only 0.35 in a 0.18 CMOS process and consists of a low-noise amplifier, downconverter and a bandpass filter. There are no on-chip inctors and the receiver requires no off-chip matching components. The measured receiver gain is 21 dB, noise figure is less than 6.6 dB, input IIP3 is 5.6 dBm, and the receiver consumes 19.5 mA from a 2.3 V supply. The receivercovers all the MB-OFDM bands from 3.1 to 8 GHz.Index Terms—CMOS, distortion, OFDM, receiver, ultra wideband, UWB.I. INTRODUCTIONULTRA-WIDEBAND (UWB)multi-band orthogonal frequency-division multiplexing (MB-OFDM) systems have been proposed as an emerging solution to wireless communicationapplications requiring high data rates (up to 480 Mb/s) over short distances. In one proposed version [1], the carrier, with a bandwidth of 528 MHz, can hop to one of 14 channels(2904+528n,n=123…14), divided into four groups of three channels and one group of two channels. This representative time-frequency interleaving for a Group 1-only systemis depicted in Fig. 1. Design of a receiver for such a systempresents many challenges e to the wide bandwidth of the RF front-end. However, to assure the widest possible adoption, RF portions of these systems should consume little DC power and die area, and be implemented in a standard CMOS process. These last requirements argue against the use of on-chip inctors wherever possible.Since theUWBfront-end intrinsically possesses a wide bandwidth, it is open to reception of undesired narrowband signals such as 802.11 a/b/g and the recently proposedWiMAX [2] systems, as shown in Fig. 2. Although OFDM systems are less susceptible to relatively narrowband jammers, nonlinearities in the receiver can result in jammer cross-molation with wideband input signals, resulting in reced signal-to-noise ratio (SNR) and a degradation in system performance [3]. In addition, received wideband signals (from other UWB transmitters) can intermolate and the resulting procts can land in a desired channel. Since the system is inherently wideband, harmonic distortion of a single unwanted UWB transmitter can also proce in-band distortion procts and rece the SNR. For the system to successfully operate in such a hostile environment, the linearity specifications of the receiver need to include these distortion effects. Fig. 1. Representative time-frequency interleaving pattern of a Group 1MB-OFDM signal [1]. Fig. 2. Representative spectrum at an MB-OFDM receiver antenna.This paper describes a UWB heterodyne receiver front-end that is designed to minimize the effects of wideband jammers from a variety of undesired sources [4]. In addition, the receiver is designed to minimize silicon area, so on-chip inctors are not employed. The receiver architecture is presented in Section II. Specifications for the receiver are derived in Section III. Detailed block design is presented in Sections IV–VI. Layout and packaging of the chip is discussed in Section VII. Measured results are presented in Section VIII, followed by a conclusion in Section IX.II. RECEIVER ARCHITECTUREWhen it comes to designing a low-power and low-cost receiver, the traditional choice is a direct conversion architecture. However, a direct conversion UWBreceiver, while attractive for power consumption and simplicity of its local oscillator (LO) scheme [5], [6], has a well-known problem of time-varying DC offset and sensitivity to narrowband jammers. A DC offset at the output of the receiver can degrade the SNR of the digitized baseband signal. In addition, it can introce second-order distortion in the baseband signal, which further degrades the SNR. A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband SystemsMahim Ranjan, Member, IEEE, and Lawrence E. Larson, Fellow, IEEE0Abstract—This paper presents an RF receiver front-end for MB-OFDM-based ultra-wideband (UWB) systems. The receiver occupies only 0.35 in a 0.18 CMOS process and consists of a low-noise amplifier, downconverter and a bandpass filter. There are no on-chip inctors and the receiver requires no off-chip matching components. The measured receiver gain is 21 dB, noise figure is less than 6.6 dB, input IIP3 is 5.6 dBm, and the receiver consumes 19.5 mA from a 2.3 V supply. The receivercovers all the MB-OFDM bands from 3.1 to 8 GHz.Index Terms—CMOS, distortion, OFDM, receiver, ultra wideband, UWB.I. INTRODUCTIONULTRA-WIDEBAND (UWB)multi-band orthogonal frequency-division multiplexing (MB-OFDM) systems have been proposed as an emerging solution to wireless communicationapplications requiring high data rates (up to 480 Mb/s) over short distances. In one proposed version [1], the carrier, with a bandwidth of 528 MHz, can hop to one of 14 channels(2904+528n,n=123…14), divided into four groups of three channels and one group of two channels. This representative time-frequency interleaving for a Group 1-only systemis depicted in Fig. 1. Design of a receiver for such a systempresents many challenges e to the wide bandwidth of the RF front-end. However, to assure the widest possible adoption, RF portions of these systems should consume little DC power and die area, and be implemented in a standard CMOS process. These last requirements argue against the use of on-chip inctors wherever possible.Since theUWBfront-end intrinsically possesses a wide bandwidth, it is open to reception of undesired narrowband signals such as 802.11 a/b/g and the recently proposedWiMAX [2] systems, as shown in Fig. 2. Although OFDM systems are less susceptible to relatively narrowband jammers, nonlinearities in the receiver can result in jammer cross-molation with wideband input signals, resulting in reced signal-to-noise ratio (SNR) and a degradation in system performance [3]. In addition, received wideband signals (from other UWB transmitters) can intermolate and the resulting procts can land in a desired channel. Since the system is inherently wideband, harmonic distortion of a single unwanted UWB transmitter can also proce in-band distortion procts and rece the SNR. For the system to successfully operate in such a hostile environment, the linearity specifications of the receiver need to include these distortion effects. .........................
Ⅷ 哪裡可以找到有關電子信息類的英語論文
1、到學校的圖書館,找到相關書籍,應該有前言或者介紹,如果有英漢對應的話 就如你所願了
2、從學校入口進中國學術期刊全文資料庫(這樣可免費),在裡面搜索相關論文,論文後面肯定有英文參考文獻,你就按上面提供的名稱找吧~~
3、把「基於單片機控制的直流恆流源的設計」翻譯成英文,然後在http://scholar.google.com/schhp?hl=en&tab=ws 盡情的找吧
4、求助你的指導老師,他知道你的論文嘛,肯定有這方面的資料的
如果可以的話,晚上我幫你找找~~現在么資源利用~~呵
Ⅸ 跪求模電方面的英文參考文獻,書目名稱
《Design with Operational Amplifiers and Analog Integrated Circuits》作者,Franco博士。
《模擬電子技術基礎》
(美國)托馬斯 L.弗洛伊德(Thomas L.Floyd) (美國)大衛 M.布奇拉(David M.Buchla)
《模擬集成電路的分析與設計》
作者:(美)格雷(Gray,P.R.)
《模擬集成電路設計精粹(配光碟)(清華版雙語教學用書)》
作者:(美)桑森(Sansen,W.M.C.)
《集成微電子器件(英文版)》
作 譯 者:(美)吉澤斯·A. 德爾阿拉莫
《模擬CMOS集成電路設計(英文版》
作者: (美)Behzad Razavi
《電子電路分析與設計——模擬電子技術》
作者,美國的紐曼
還有好多優秀的外文教材資料,在這里就列這幾個。推薦看純英的,這樣會比較好的提升自己。
Ⅹ 求電氣工程論文英文參考文獻三篇 我已寫好一篇論文 學校要求要有三篇英文參考文獻 我的只有中文的
一種方式是上谷歌找,因為不知道你的論文,我找不到,也看不懂
二是到圖書館的外文資料庫中找
三是通過中文文獻的參考文獻上找