㈠ 作文:轉基因技術在醫學上有什麼作用
1.基因工程用於生產蛋白質類葯物
治療糖尿病的胰島素,是一種 51 個氨基酸殘基組成的蛋白質,1982 年美國 EliLilly 公司推出基因工程製造的人胰島素,商品名為(Humulin).傳統的生產方法是從牛的胰臟中提取.每 1000 磅牛胰臟,才能得到 10 克胰島素.通過基因工程方法,把編碼胰島素的基因送到大腸桿菌細胞中去,造出能生產胰島素的工程菌;從200升發酵液就可得到10克胰島素.
干擾素具有廣譜抗病毒的效能,是一種治療乙肝的有效葯物,國際上批准治療丙型病毒性肝炎的葯物只有它.但是,通常情況下人體內干擾素基因處於"睡眠"狀態,因而血中一般測不到干擾素.只有在發生病毒感染或受到干擾素誘導物的誘導時,人體內的干擾素基因才會"蘇醒",開始產生干擾素,但其數量微乎其微.即使經過誘導,從人血中提取1mg干擾素,需要人血8000ml,其成本高得驚人.據計算:要獲取1磅(453g)純干擾素,其成本高達200億美元.使大多數病人沒有使用干擾素的能力.1980年後,干擾素與乙肝疫苗一樣,採用基因工程進行生產,其基本原理及操作流程與乙肝疫苗十分類似.現在要獲取1磅(453g)純干擾素,其成本不到1億美元.從人血中分離純化治療一個肝炎病人的費用高達二三萬美元,用基因工程技術生產干擾素治療一個肝炎病人大約只需二三百美元.基因工程生產出來的大量干擾素,是基因工程葯物對人類的又一重大貢獻.
生產基因工程葯物的基本方法是,將目的基因用DNA重組的方法連接在體載體上,然後將載體導入靶細胞(微生物,哺乳動物細胞或人體組織靶細胞),使目的基因在靶細胞中得到表達,最後將表達的目的蛋白質提純及作成制劑,從而成為蛋白類葯或疫苗.若目的基因直接在人體組織靶細胞內表達,就成為基因治療.
目前用基因工程生產的蛋白質葯物已達數十種,許多以前本不可能大量生產的生長因子,凝血因子等蛋白質葯物,現在用基因工程辦法便可能大量生產.已有50多種基因工程葯物上市,近千種處於研發狀態.每年平均有3-4個新葯或疫苗問世,開發成功的約五十個葯品已廣泛應用於治療癌症、肝炎、發育不良、糖尿病、囊纖維變性和一些遺傳病上,在很多領域特別是疑難病症上,起到了傳統化學葯物難以達到的作用.
2.基因工程用於疫苗生產
常用的制備疫苗的方法,一種是弱毒活疫苗,一種是死疫苗.兩種疫苗各有自身的弱點.活疫苗隱含著感染的危險性.死疫苗免疫活性不高,需加大注射量或多次接種.利用基因工程制備重組亞基疫苗,可以克服上述缺點,亞基疫苗指只含有病原物的一個或幾個抗原成分,不含病原物遺傳信息.重組亞基疫苗就是用基因工程方法,把編碼抗原蛋白質的基因重組到載體上去,再送入細菌細胞或其他細胞中區大量生產.這樣得到的亞基疫苗往往效價很高,但決無感染毒性等危險.在酵母中表達乙型肝炎表面抗原 HBsAg 產量可達每升 2.5mg ,已於 1984 年問世.
以乙型病毒性肝炎(以下簡稱乙肝)疫苗為例,像其它蛋白質一樣,乙肝表面抗原(HBSAg)的產生也受DNA調控.
長期以來,醫學工作者在防治乙肝方面做了大量工作,但曾一度陷於困境.乙肝病毒(HBV)主要由兩部分組成,內部為DNA,外部有一層外殼蛋白質,稱為HBSAg.把一定量的HBSAg注射入人體,就使機體產生對HBV抗衡的抗體.機體依靠這種抗體,可以清除入侵機體內的HBV.過去,乙肝疫苗的來源,主要是從HBV攜帶者的血液中分離出來的HBSAg,這種血液是不安全的,可能混有其他病原體[其他型的肝炎病毒,特別是艾滋病病毒(HIV)]的污染.此外,血液來源也是極有限的,使乙肝疫苗的供應猶如杯水車薪,遠不能滿足需要.基因工程疫苗解決了這一難題.利用基因剪切技術,用一種"基因剪刀"將調控HBSAg的那段DNA剪裁下來,裝到一個表達載體中,所謂表達載體,是因為它可以把這段DNA的功能發揮出來;再把這種表達載體轉移到受體細胞內,如大腸桿菌或酵母菌等;最後再通過這些大腸桿菌或酵母菌的快速繁殖,生產出大量我們所需要的HBSAg(乙肝疫苗).
3.基因工程用於基因治療
人體基因的缺失,導致一些遺傳疾病,應用基因工程技術使缺失的基因歸還人體,達到治療的目的,已成為基因工程在醫學方面應用的又一重要內容.
㈡ 基因工程與精準醫學兩者有什麼關聯
優點基因工程技術幾乎涉及到人類的生存所必需的各個行業。比如將一個具有殺蟲效果的基因轉移到棉花、水稻等農作物種中,這些轉基因作物就有了抗蟲能力,因此基因工程被應用到農業領域;要是把抗蟲基因轉移到楊樹、松樹等樹木中,基因工程就被應用到林業領域;要是把生物激素基因轉移到支物中去,這就與漁業和畜牧業有關了;如果利用微生物或動物細胞來生產多肽葯物,那麼基因工程就可以應用到醫學領域。總之一句話,基因工程應用范圍將是十分廣泛的。 缺點基因工程安全性
㈢ 在醫學方面基因工程的主要方向是什麼
在醫學方面基因工程的應用是製造「超級葯物」以消除遺傳疾病及癌症、艾滋病一類絕症,其方向主要是採用基因重組技術,使人體恢復胰島素生產功能,根除糖尿病;製造抗癌葯物,使癌細胞轉化為正常細胞或消滅癌細胞,以根治癌症;培養防治艾滋病、肝病、小兒麻痹症等病症的疫苗;修改有缺陷基因,消除遺傳疾病;在水果或食用植物中轉移葯物基因,培育有免疫功能的水果。基因還可培養用於人體的動物器官。
㈣ 基因工程技術在醫學的應用
基因工程的應用--在醫學上的應用
1.基因工程用於生產蛋白質類葯物
治療糖尿病的胰島素,是一種 51 個氨基酸殘基組成的蛋白質,1982 年美國 EliLilly 公司推出基因工程製造的人胰島素,商品名為(Humulin)。傳統的生產方法是從牛的胰臟中提取。 每 1000 磅牛胰臟,才能得到 10 克胰島素。通過基因工程方法,把編碼胰島素的基因送到大腸桿菌細胞中去,造出能生產胰島素的工程菌;從200升發酵液就可得到10克胰島素。
干擾素具有廣譜抗病毒的效能,是一種治療乙肝的有效葯物,國際上批准治療丙型病毒性肝炎的葯物只有它。但是,通常情況下人體內干擾素基因處於"睡眠"狀態,因而血中一般測不到干擾素。只有在發生病毒感染或受到干擾素誘導物的誘導時,人體內的干擾素基因才會"蘇醒",開始產生干擾素,但其數量微乎其微。即使經過誘導,從人血中提取1mg干擾素,需要人血8000ml,其成本高得驚人。據計算:要獲取1磅(453g)純干擾素,其成本高達200億美元。使大多數病人沒有使用干擾素的能力。1980年後,干擾素與乙肝疫苗一樣,採用基因工程進行生產,其基本原理及操作流程與乙肝疫苗十分類似。現在要獲取1磅(453g)純干擾素,其成本不到1億美元。從人血中分離純化治療一個肝炎病人的費用高達二三萬美元,用基因工程技術生產干擾素治療一個肝炎病人大約只需二三百美元。基因工程生產出來的大量干擾素,是基因工程葯物對人類的又一重大貢獻。
生產基因工程葯物的基本方法是,將目的基因用DNA重組的方法連接在體載體上,然後將載體導入靶細胞(微生物,哺乳動物細胞或人體組織靶細胞),使目的基因在靶細胞中得到表達,最後將表達的目的蛋白質提純及作成制劑,從而成為蛋白類葯或疫苗。若目的基因直接在人體組織靶細胞內表達,就成為基因治療。
目前用基因工程生產的蛋白質葯物已達數十種,許多以前本不可能大量生產的生長因子,凝血因子等蛋白質葯物,現在用基因工程辦法便可能大量生產。已有50多種基因工程葯物上市,近千種處於研發狀態。每年平均有3-4個新葯或疫苗問世,開發成功的約五十個葯品已廣泛應用於治療癌症、肝炎、發育不良、糖尿病、囊纖維變性和一些遺傳病上,在很多領域特別是疑難病症上,起到了傳統化學葯物難以達到的作用。
2.基因工程用於疫苗生產
常用的制備疫苗的方法,一種是弱毒活疫苗,一種是死疫苗。兩種疫苗各有自身的弱點。活疫苗隱含著感染的危險性。死疫苗免疫活性不高,需加大注射量或多次接種。利用基因工程制備重組亞基疫苗,可以克服上述缺點,亞基疫苗指只含有病原物的一個或幾個抗原成分,不含病原物遺傳信息。重組亞基疫苗就是用基因工程方法,把編碼抗原蛋白質的基因重組到載體上去,再送入細菌細胞或其他細胞中區大量生產。這樣得到的亞基疫苗往往效價很高,但決無感染毒性等危險。在酵母中表達乙型肝炎表面抗原 HBsAg 產量可達每升 2.5mg ,已於 1984 年問世。
以乙型病毒性肝炎(以下簡稱乙肝)疫苗為例,像其它蛋白質一樣,乙肝表面抗原(HBSAg)的產生也受DNA調控。
長期以來,醫學工作者在防治乙肝方面做了大量工作,但曾一度陷於困境。乙肝病毒(HBV)主要由兩部分組成,內部為DNA,外部有一層外殼蛋白質,稱為HBSAg。把一定量的HBSAg注射入人體,就使機體產生對HBV抗衡的抗體。機體依靠這種抗體,可以清除入侵機體內的HBV。過去,乙肝疫苗的來源,主要是從HBV攜帶者的血液中分離出來的HBSAg,這種血液是不安全的,可能混有其他病原體[其他型的肝炎病毒,特別是艾滋病病毒(HIV)]的污染。此外,血液來源也是極有限的,使乙肝疫苗的供應猶如杯水車薪,遠不能滿足需要。基因工程疫苗解決了這一難題。利用基因剪切技術,用一種"基因剪刀"將調控HBSAg的那段DNA剪裁下來,裝到一個表達載體中,所謂表達載體,是因為它可以把這段DNA的功能發揮出來;再把這種表達載體轉移到受體細胞內,如大腸桿菌或酵母菌等;最後再通過這些大腸桿菌或酵母菌的快速繁殖,生產出大量我們所需要的HBSAg(乙肝疫苗)。
3. 基因工程用於基因治療
人體基因的缺失,導致一些遺傳疾病,應用基因工程技術使缺失的基因歸還人體,達到治療的目的,已成為基因工程在醫學方面應用的又一重要內容。
㈤ 基因工程技術給人類社會和生活帶來了哪些影響
一、農牧業、食品工業方面
運用基因工程技術,不但可以培養優質、高產、抗性好的農作物及畜、禽新品種,還可以培養出具有特殊用途的動、植物。
1、轉基因魚:生長快、耐不良環境、肉質好的轉基因魚(中國)。
2、轉基因牛:乳汁中含有人生長激素的轉基因牛(阿根廷)。
3、轉黃瓜抗青枯病基因的甜椒。
4、轉魚抗寒基因的番茄。
5、轉黃瓜抗青枯病基因的馬鈴薯。
6、不會引起過敏的轉基因大豆。
7、超級動物:導入貯藏蛋白基因的超級羊和超級小鼠
8、特殊動物:導入人基因具特殊用途的豬和小鼠
9、抗蟲棉:蘇雲金芽胞桿菌可合成毒蛋白殺死棉鈴蟲,把這部分基因導入棉花的離體細胞中,再組織培養就可獲得抗蟲 棉。
二、環境保護
基因工程做成的DNA探針能夠十分靈敏地檢測環境中的病毒、細菌等污染。利用基因工程培育的指示生物能十分靈敏地反映環境污染的情況,卻不易因環境污染而大量死亡,甚至還可以吸收和轉化污染物。
基因工程做成的「超級細菌」能吞食和分解多種污染環境的物質(通常一種細菌只能分解石油中的一種烴類,用基因工程培育成功的「超級細菌」卻能分解石油中的多種烴類化合物。有的還能吞食轉化汞、鎘等重金屬,分解DDT等毒害物質。)
三、醫學
基因作為機體內的遺傳單位,不僅可以決定我們的相貌、高矮,而且它的異常會不可避免地導致各種疾病的出現。某些缺陷基因可能會遺傳給後代,有些則不能。基因治療的提出最初是針對單基因缺陷的遺傳疾病,目的在於有一個正常的基因來代替缺陷基因或者來補救缺陷基因的致病因素。
用基因治病是把功能基因導入病人體內使之表達,並因表達產物——蛋白質發揮了功能使疾病得以治療。基因治療的結果就像給基因做了一次手術,治病治根,所以有人又把它形容為「分子外科」。
四、醫葯衛生
1、基因工程葯品的生產
許多葯品的生產是從生物組織中提取的。受材料來源限制產量有限,其價格往往十分昂貴。微生物生長迅速,容易控制,適於大規模工業化生產。若將生物合成相應葯物成分的基因導入微生物細胞內,讓它們產生相應的葯物,不但能解決產量問題,還能大大降低生產成本。
2、基因診斷與基因治療
運用基因工程設計製造的「DNA探針」檢測肝炎病毒等病毒感染及遺傳缺陷,不但准確而且迅速。通過基因工程給患有遺傳病的人體內導入正常基因可「一次性」解除病人的疾苦。
優點
基因工程最突出的優點是打破了常規育種難以突破的物種之間的界限,可以使原核生物與真核生物之間、動物與植物之間,甚至人與其他生物之間的遺傳信息進行重組和轉移。人的基因可以轉移到大腸桿菌中表達,細菌的基因可以轉移到植物中表達。
㈥ 基因工程對醫療有什麼作用
隨著人類對基因研究的不斷深入,逐漸發現許多疾病是由於基因結構與功能發生改變所引起的。這使科學家不僅能發現有缺陷的基因,而且還能掌握如何對基因進行診斷、修復、治療和預防。基因治療是生物技術發展的前沿。無論哪一種基因治療,目前都處於初期的臨床試驗階段,均沒有穩定的療效和完全的安全性。
人體血液圖
㈦ 轉基因技術在臨床醫學方面得到了哪些應用
1.基因工程用於生產蛋白質類葯物
治療糖尿病的胰島素,是一種 51 個氨基酸殘基組成的蛋白質,1982 年美國 EliLilly 公司推出基因工程製造的人胰島素,商品名為(Humulin)。傳統的生產方法是從牛的胰臟中提取。 每 1000 磅牛胰臟,才能得到 10 克胰島素。通過基因工程方法,把編碼胰島素的基因送到大腸桿菌細胞中去,造出能生產胰島素的工程菌;從200升發酵液就可得到10克胰島素。
干擾素具有廣譜抗病毒的效能,是一種治療乙肝的有效葯物,國際上批准治療丙型病毒性肝炎的葯物只有它。但是,通常情況下人體內干擾素基因處於"睡眠"狀態,因而血中一般測不到干擾素。只有在發生病毒感染或受到干擾素誘導物的誘導時,人體內的干擾素基因才會"蘇醒",開始產生干擾素,但其數量微乎其微。即使經過誘導,從人血中提取1mg干擾素,需要人血8000ml,其成本高得驚人。據計算:要獲取1磅(453g)純干擾素,其成本高達200億美元。使大多數病人沒有使用干擾素的能力。1980年後,干擾素與乙肝疫苗一樣,採用基因工程進行生產,其基本原理及操作流程與乙肝疫苗十分類似。現在要獲取1磅(453g)純干擾素,其成本不到1億美元。從人血中分離純化治療一個肝炎病人的費用高達二三萬美元,用基因工程技術生產干擾素治療一個肝炎病人大約只需二三百美元。基因工程生產出來的大量干擾素,是基因工程葯物對人類的又一重大貢獻。
生產基因工程葯物的基本方法是,將目的基因用DNA重組的方法連接在體載體上,然後將載體導入靶細胞(微生物,哺乳動物細胞或人體組織靶細胞),使目的基因在靶細胞中得到表達,最後將表達的目的蛋白質提純及作成制劑,從而成為蛋白類葯或疫苗。若目的基因直接在人體組織靶細胞內表達,就成為基因治療。
目前用基因工程生產的蛋白質葯物已達數十種,許多以前本不可能大量生產的生長因子,凝血因子等蛋白質葯物,現在用基因工程辦法便可能大量生產。已有50多種基因工程葯物上市,近千種處於研發狀態。每年平均有3-4個新葯或疫苗問世,開發成功的約五十個葯品已廣泛應用於治療癌症、肝炎、發育不良、糖尿病、囊纖維變性和一些遺傳病上,在很多領域特別是疑難病症上,起到了傳統化學葯物難以達到的作用。
2.基因工程用於疫苗生產
常用的制備疫苗的方法,一種是弱毒活疫苗,一種是死疫苗。兩種疫苗各有自身的弱點。活疫苗隱含著感染的危險性。死疫苗免疫活性不高,需加大注射量或多次接種。利用基因工程制備重組亞基疫苗,可以克服上述缺點,亞基疫苗指只含有病原物的一個或幾個抗原成分,不含病原物遺傳信息。重組亞基疫苗就是用基因工程方法,把編碼抗原蛋白質的基因重組到載體上去,再送入細菌細胞或其他細胞中區大量生產。這樣得到的亞基疫苗往往效價很高,但決無感染毒性等危險。在酵母中表達乙型肝炎表面抗原 HBsAg 產量可達每升 2.5mg ,已於 1984 年問世。
以乙型病毒性肝炎(以下簡稱乙肝)疫苗為例,像其它蛋白質一樣,乙肝表面抗原(HBSAg)的產生也受DNA調控。
長期以來,醫學工作者在防治乙肝方面做了大量工作,但曾一度陷於困境。乙肝病毒(HBV)主要由兩部分組成,內部為DNA,外部有一層外殼蛋白質,稱為HBSAg。把一定量的HBSAg注射入人體,就使機體產生對HBV抗衡的抗體。機體依靠這種抗體,可以清除入侵機體內的HBV。過去,乙肝疫苗的來源,主要是從HBV攜帶者的血液中分離出來的HBSAg,這種血液是不安全的,可能混有其他病原體[其他型的肝炎病毒,特別是艾滋病病毒(HIV)]的污染。此外,血液來源也是極有限的,使乙肝疫苗的供應猶如杯水車薪,遠不能滿足需要。基因工程疫苗解決了這一難題。利用基因剪切技術,用一種"基因剪刀"將調控HBSAg的那段DNA剪裁下來,裝到一個表達載體中,所謂表達載體,是因為它可以把這段DNA的功能發揮出來;再把這種表達載體轉移到受體細胞內,如大腸桿菌或酵母菌等;最後再通過這些大腸桿菌或酵母菌的快速繁殖,生產出大量我們所需要的HBSAg(乙肝疫苗)。
3. 基因工程用於基因治療
人體基因的缺失,導致一些遺傳疾病,應用基因工程技術使缺失的基因歸還人體,達到治療的目的,已成為基因工程在醫學方面應用的又一重要內容。
㈧ 基因工程給人類帶來的影響
按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
㈨ 基因工程技術在醫葯衛生的應用
主要有基因工程疫苗和基因工程葯物,兩大類用途。
基因工程疫苗是第二代疫苗,它可以分為兩類,一類是指用基因工程的方法,表達出病原體的一段基因序列,將表達的產物用作疫苗。這類疫苗無毒性,舞感染能力,具有較強的免疫原性,被稱為亞甲基疫苗,如現在多數乙肝疫苗就是這類。 另一類是活性重組疫苗,是通過對細菌病毒的改造得到的。 (除此之外還有DNA疫苗,又稱基因免疫,這成為第三代疫苗。 但大多數的基因工程疫苗還處在臨床研究階段,所以還未大規模一用。
基因工程葯物是指用基因工程生產的人用蛋白葯物,這類蛋白一般為人體健康所必需,體內含量極少,卻對人體起重要的調節作用。
如激素(胰島素)、各類細胞因子(白細胞介素、干擾素等)。
回答完畢,希望這對你有用。
㈩ 基因工程在醫學方面有哪些成果
在醫學方面基因工程的應用是製造「超級葯物」以消除遺傳疾病及癌症、艾滋病一類絕症,其方向主要是採用基因重組技術,使人體恢復胰島素生產功能,根除糖尿病;製造抗癌葯物,使癌細胞轉化為正常細胞或消滅癌細胞,以根治癌症;培養防治艾滋。
科學家通過基因研究,宣布鳥類起源於恐龍病、肝病、小兒麻痹症等病症的疫苗;修改有缺陷基因,消除遺傳疾病;在水果或食用植物中轉移葯物基因,培育有免疫功能的水果。基因還可培養用於人體的動物器官。
科學家通過基因研究,宣布鳥類起源於恐龍