導航:首頁 > 工程技術 > 機械工程標准目錄中英文對照

機械工程標准目錄中英文對照

發布時間:2021-08-13 14:47:23

1. 關於機械製造方面的專業術語(中英文對照表)!

英語6級,僅供參考,點個採納,嘻嘻: 聯結link 傳動drive/transmission 軸shaft 彈性elasticity 頻率特性 frequency characteristic 誤差error 響應response 定位allocation 機床夾具 jig 動力學 dynamic 運動學 kinematic 靜力學 static 分析力學 analyse mechanics 拉伸pulling 壓縮hitting 剪切shear 扭轉twist 彎曲應力 bending stress 強度intensity 三相交流電 three-phase AC 磁路magnetic circles 變壓器 transformer 非同步電動機 asynchronous motor 幾何形狀 geometrical 精度precision 正弦形的 sinusoid 交流電路 AC circuit 機械加工餘量 machining allowance 變形力 deforming force 變形deformation 應力stress 硬度rigidity 熱處理 heat treatment 退火anneal 正火normalizing 脫碳decarburization 滲碳carburization 電路circuit 半導體元件 semiconctor element 反饋feedback 發生器 generator 直流電源 DC electrical source 門電路 gate circuit 邏輯代數 logic algebra 外圓磨削 external grinding 內圓磨削 internal grinding 平面磨削 plane grinding 變速箱 gearbox 離合器 clutch 絞孔fraising 絞刀reamer 螺紋加工 thread processing 螺釘screw 銑削mill 銑刀milling cutter 功率power 工件workpiece 齒輪加工 gear mechining 齒輪gear 主運動 main movement 主運動方向 direction of main movement 進給方向 direction of feed 進給運動 feed movement 合成進給運動 resultant movement of feed 合成切削運動 resultant movement of cutting 合成切削運動方向 direction of resultant movement of cutting 切削深度 cutting depth 前刀面 rake face 刀尖nose of tool 前角rake angle

2. 機械工程專業英語的圖書目錄

Part1Fundamentals of Mechanical Engineering
Unit1Mechanical Engineering
PassageⅠIntroction to Mechanical Engineering
PassageⅡIntroction to Design
PassageⅢManufacturing
PassageⅣThe Science of Mechanics
Unit2Engineering Materials
PassageⅠMetals and Ferrous Metals
PassageⅡNonmetallic Materials
PassageⅢPowder Metallurgy
Unit3Material Treatment and Properties
PassageⅠHeat Treatment
PassageⅡMechanical Properties of Metals
PassageⅢStress and strain
PassageⅣSurface Treatment
Unit4Mechanical Drawing
PassageⅠEngineering Drawing
PassageⅡSectional Views
PassageⅢMachine Drawings
PassageⅣAutoCAD
Unit5Mechanism
PassageⅠIntroction to Mechanism
PassageⅡShafting
PassageⅢLinkages
Unit6Machine Parts
PassageⅠFasteners
PassageⅡKeys,Splines,and Pins
PassageⅢBearings
PassageⅣGears
Unit7Mechanical Design
PassageⅠIntroction to Mechanical Design
PassageⅡMachine Design
PassageⅢEngineering Tolerancing
PassageⅣConceptual Design
Unit8Hot Working and Forming Processes
PassageⅠCasting
PassageⅡWelding
PassageⅢForming
PassageⅣForging
Part2Equipment and Technology of Machine Manufacture
Unit9Basic Machining Operations—Turning,Boring and Milling
PassageⅠBasic Machining Operations
PassageⅡTurning on Lathe centers
PassageⅢBoring
PassageⅣMilling
Unit10Broaching、Sawing、Drilling and Reaming
PassageⅠBroaching
PassageⅡSawing
PassageⅢDrilling
PassageⅣReaming
Unit11Lathes and Other Machines
PassageⅠLathes,Boring Machines and Planing Machine
PassageⅡDrill press
PassageⅢGrinding Wheels and Grinding Machines
PassageⅣMilling Machines
Part3Computerized Manufacturing and Mechantronics Technologies
Unit12Technologies of Numerical Control and Mechantronics
PassageⅠNumerical Control of Proction Equipments (I)
PassageⅡNumerical Control of Proction Equipments (Ⅱ)
PassageⅢInstrial Robot
PassageⅣAdaptive Control of Machine Tools
Unit13CAD/CAM/CAPP
PassageⅠCAD and CAM
PassageⅡComputer Aided Process Planning (CAPP)
Unit14Advanced Technology of Manufacturing
PassageⅠGroup Technology
PassageⅡCellular Manufacturing
PassageⅢMachine Centers
PassageⅣFlexible Manufacturing Systems
PassageⅤComputer Integrated Manufacturing System (Ⅰ)
PassageⅨComputer Integrated Manufacturing System (Ⅱ)
Part4Assembly
Unit15Assembly
PassageⅠIntroction to Assembly
PassageⅡTypes of Manual Assembly Methods
PassageⅢAutomated Assembly
PassageⅣAssembly Machines and Systems
Part5Machinery for Agriculture
Unit16Engine and Tractor
PassageⅠHow the Engine Works
PassageⅡThe patrol Engine
PassageⅢDiesel Engines
PassageⅣThe tractor
Glossary
參考文獻

3. 機械中英文對照文章

對壓縮機單螺桿專用加工機床的介紹更新時間

摘要:本文從四個方面介紹了國內現有單螺桿加工機床的布局和結構,並把優缺點一一列舉出來,由於壓縮機生產廠的單螺桿加工機床和機床資料對外保密,以上介紹難免有片面、不妥之處,因此僅供單螺桿壓縮機生產廠參考。
一、介紹機床的布局
壓縮機排氣量的大小決定了星輪、螺桿直徑的大小和嚙合中心距的大小,因此螺桿直徑的不同,機床的主軸與刀具的回轉中心也不同。為滿足加工不同直徑的螺桿,目前國內單螺桿加工機床的布局大致有以下幾種方案。
第一種:機床的主軸與刀具回轉中心的中心距為固定式
機床的主軸與刀具回轉中心的中心距為固定式,中心距不可調整。加工幾種直徑的螺桿就需要幾種中心距規格不同的機床。
優點:機床的結構簡單。
缺點:每種機床只能加工一種規格的螺桿,當市場上某種規格的壓縮機螺桿需要量大時,造成一台機床加工,其他機床閑置。
第二種:機床的主軸箱為可回轉式
機床可根據加工螺桿直徑的大小在加工前把主軸箱旋轉一個角度。這種主軸箱能夠回轉的機床是對上述第一種機床在使用方法上的改進,與第一種機床的結構基本相同。
優點:機床的結構簡單,能適應多種規格螺桿的加工。
缺點1:主軸箱旋轉後主軸回轉中心線與刀具回轉中心線間的距離不易精確測量。
缺點2:主軸箱旋轉後主軸前端面與刀具的回轉中心線間的距離減少,因此加工較大直徑的螺桿受到限制。
第三種:機床的主軸箱為橫向移動式
主軸箱底部與底座之間布置有矩形滑動導軌,主軸箱移動的方向垂直於主軸回轉中心線並垂直於刀具回轉中心線。主軸箱的動力通過花鍵軸傳給底座內的刀具進給機構。
根據加工螺桿直徑的大小,在加工前用手輪絲杠進給機構把主軸箱移動到適當位置,然後用螺釘將主軸箱固定在底座上。主軸箱的移動距離可用光柵尺檢測,位置誤差±0.005mm。
採用主軸箱可橫向移動的一個機床就可以加工直徑φ95~φ385mm之間任何一種規格的螺桿。
由於加工φ95~φ385mm直徑的螺桿,造成主軸前端面與刀具回轉中心線間的距離差值過大,因此在實際應用時設計成兩種規格的機床,一個機床加工φ95~φ205mm直徑的螺桿,另一個機床加工φ180~φ385mm直徑的螺桿。
優點:機床能適應多種規格螺桿的加工,每種規格的螺桿不需要配備相應的加工機床。
缺點:機床的結構和機床的裝配較前二種機床復雜,機床的造價也較前二種機床高。
二、介紹機床的主軸結構
機床主軸箱的水平主軸和底座上的立式的主軸精度的高低決定了被加工螺桿的精度,同時螺桿在壓縮機中以幾千轉的速度高速旋轉時,精度較差的螺桿會使壓縮機產生發熱、振動、效率低、磨損快等現象。
國內目前現有的單螺桿加工機床主軸結構大致有以下兩種方案。
第一種:軸承徑向游隙不可調的主軸結構
主軸前軸承採用1個雙列圓柱滾子軸承和兩個推力球軸承組合,該主軸使用雙列圓柱滾子軸承承受徑向切削力,使用兩個推力球軸承承受軸向切削力。
主軸後軸承一般採用1個雙列圓柱滾子軸承或採用1個向心球軸承。
這種主軸結構的優點:主軸的加工和裝配簡單,造價較低。
缺點1:由於主軸軸承的徑向游隙不可調整,所以主軸精度較差。雖然可以利用軸承的內徑和軸徑的過盈配合來消除軸承的徑向游隙,但每個軸承的內徑和徑向游隙不是一個固定值,因此設計和加工時很難給准軸徑與軸承內徑的配合公差。
缺點2:在市場上很難買到國產或進口的C、D級或P4、P5級的推力球軸承,機床生產廠常用普通級軸承替代使用,此舉也影響了主軸精度的提高。
軸承徑向游隙不可調的主軸結構適用於一般精度的普通機床,不適用於對主軸精度要求較高的機床。
第二種:軸承徑向游隙可調的主軸結構
主軸前軸承採用一個P4級圓錐孔的雙列圓柱滾子軸承和1個P4級的雙列向心推力球軸承組合。該主軸使用圓錐孔的雙列圓柱滾子軸承承受徑向切削力,使用雙列向心推力球軸承承受軸向切削力和部分徑向切削力。
主軸後軸承一般採用1個P5級圓錐孔的雙列圓柱滾子軸承。
圓錐孔雙列圓柱滾子軸承的內圈和配合軸徑均為1:12圓錐,用圓螺母鎖緊軸承則使軸承在軸向產生一個位移並使軸承的內圈膨脹,從而達到減少或消除軸承徑向游隙的目的。
這種主軸結構的優點:主軸精度較高。在主軸前端面φ230mm直徑上測量主軸的端面跳動值為0.010mm。在主軸前端φ230mm外圓上測量主軸的徑向跳動值為0.005mm。第二種結構的主軸精度比第一種主軸精度提高50%左右。
這種主軸結構的缺點:
主軸的加工工藝較復雜,主軸的裝配也需要有經驗的工人操作才能使主軸精度達到理想數值。
三、刀具進給深度的控制
不同直徑的螺桿需要加工螺旋槽的深度也不同,螺旋槽的深度從幾十毫米到一百多毫米不等,刀具進給機構大約需要旋轉進刀幾千圈才能完成一個螺桿零件的加工。
由於刀具進給機構在刀具旋轉的同時還要完成進刀動作,所以一些在普通機床上常用的機械、電氣控制切深的方法都不適用於單螺桿加工機床。
單螺桿加工機床的刀具進給機構採用以下不同的方法都可以達到控制進刀深度的目的。
第一種:摩擦離合器和電氣開關控制刀具進給深度
它的控制原理是刀具切深增大時刀具進給機構的負載扭距增大,使刀具進給機構傳動鏈中的摩擦離合器打滑,一個機械連桿機構觸發電氣開關並發出聲、光信號提示操作者,此時操作者人工操作斷開刀具進給機構的動力。
這種控制方法的優點是:控制方法簡單及零件加工和操作不受突然斷電的影響。
缺點是:加工不同直徑的螺桿需要調整摩擦離合器壓緊碟簧的預緊力。
由於每個螺桿材質的密度、硬度存在細微差異及刀具鋒利程度也存在差異,因此使這種控制方法的精度不太准確,可能導致螺桿螺旋槽的深度公差過大。
第二種:用電磁離合器、編碼器組合控制刀具進給深度
刀具進給系統中,裝有電磁離合器及一對用於檢測刀具轉動圈數的測速齒輪和一個編碼器。

結論:本文從四個方面介紹了國內現有單螺桿加工機床的布局和結構,並把優缺點一一列舉出來,由於壓縮機生產廠的單螺桿加工機床和機床資料對外保密,以上介紹難免有片面、不妥之處,因此僅供單螺桿壓縮機生產廠參考。

Dedicated to the single screw compressor machine updated the Introction

Abstract: This paper describes four areas from the existing single-screw machine layout and structure, and put out the advantages and disadvantages of the list, because of the compressor plant single-screw machine tools and machine tool external Security information, the above introction there is inevitably one-sided and wrong, and are therefore single-screw compressor for the proction of reference works.
First, introce the layout of machine tools
Decide the size of the compressor displacement of the stars round, screw diameter, mesh size and the size of the center distance, so different in diameter screw, machine tool spindle and the rotary center are also different. To meet the processing of different diameter screw, single screw Currently the layout of machine tools in general there are several options.
The first is: machine tool rotary tool spindle center and the center distance for the fixed
Machine tool rotary tool spindle center and the center distance for the fixed, can not adjust the center distance. Processing of several of the screw diameter on the center distance required several different specifications of the machine.
Advantages: simple structure of the machine.
Disadvantage: each machine can only process a specification of the screw, when the market on a certain specification requirements when the screw compressor, resulting in a machine, other machine idle.
The second: the machine tool spindle box for rotary
Processing screw machine according to the size of the diameter at the processing before a point of rotating spindle box. Spindle box that the machine can turn on a machine at the above-mentioned article on the use of the improvements, with the first structure of a machine tool is basically the same.
Advantages: the structure of machine tool easy to adapt to a variety of specifications of the processing screw.
One disadvantage: after the rotating spindle box and the tool spindle turning center line distance between the center line of accurate measurement difficult.
2 disadvantage: after the rotating spindle spindle box and the front surface of the rotary cutter centerline distance between the rection of the larger diameter of the screw processing is limited.
The third: the machine tool spindle box for horizontal mobile
Box at the bottom of the spindle and the base there is arranged between the rectangular sliding rail, spindle box perpendicular to the direction of movement of spindle centerline and perpendicular to the centerline of the tool rotation. Through the power of the spindle box spline shaft to the base of the tool feed mechanism.
Screw diameter, according to the size of the processing in the processing of the previous round by hand to the body put into the screw spindle box moved to the appropriate location, and then screw the spindle box on a fixed base. Spindle box available from the mobile Grating detection, position error ± 0.005mm.
Horizontal spindle box can be used as a mobile machine can process diameter φ95 ~ φ385mm any kind between the screw specifications.
Φ95 ~ φ385mm processing because of the diameter of the screw, causing the front surface and the tool spindle rotation the distance between the center line of the margin is too large, the actual application in the design specifications of the machine into two, a φ95 ~ φ205mm machine screw diameter Another φ180 ~ φ385mm machine screw diameter.
Advantages: a variety of tools to adapt to the specifications of the processing screw, each screw specifications need not be provided with the appropriate machine tools.
Disadvantage: the structure of machine tools and machine tool assembly of the two kinds of more complex machine tools, machine tools than the cost of two kinds of machine tools before the high.
Second, introce the structure of machine tool spindle
The level of machine tool spindle box on the main axis and the base of the vertical axis determines the degree of precision was the precision screw machining, at the same time screw compressor at a speed of thousands of high-speed rotary switch, the accuracy of the screw will be less so that the compressor have a fever, vibration, low efficiency, such as wear and tear situation quickly.
Currently available single-screw machine spindle structure of the program has the following two.
The first is: bearing radial clearance is not adjustable spindle structure
Before spindle bearing out the use of one pairs of cylindrical roller bearings and thrust ball bearing combination of both, the main use of double row cylindrical roller bearings under radial cutting force, the use of two ball bearings to bear axial thrust cutting force.
After the general adoption of the spindle bearings out one pairs of cylindrical roller bearings or a ball bearing to the heart.
Main advantages of this structure: the main axis of the processing and assembly of simple, low cost.
One disadvantage: because the main axis of the radial bearing clearance can not be adjusted so poor precision spindle. Although the use of bearings and shaft diameter fit to eliminate the radial bearing clearance, but each bearing diameter and radial clearance is not a fixed value, so it is difficult to design and processing to the quasi-axial-radial and bearings with bore tolerances.
2 disadvantage: it is very difficult to buy in the market of domestically proced or imported, C, D or P4, P5 class thrust ball bearings, machine tool manufacturing plant commonly used alternative to the use of ordinary class bearings, which also affected the accuracy of the enhance spindle.
Bearing radial clearance adjustable spindle structure do not apply to the general accuracy of the general machine tools, does not apply to require a higher accuracy of the spindle of machine tools.
The second: the radial bearing clearance adjustable spindle structure
Before the adoption of a spindle bearing P4 class of double row tapered hole cylindrical roller bearings and a P4-class double row ball bearing thrust to the combination of heart. The use of the spindle hole of the double row tapered cylindrical roller bearings under radial cutting force, the use of double row ball bearing thrust to the heart to bear part of the axial and radial cutting force cutting force.
Spindle bearings generally used after a P5 class of double row tapered hole cylindrical roller bearings.
Double row tapered hole cylindrical roller bearings with inner ring and shaft are tapered 1:12, bearing lock nut with a round led a bearing in the axial displacement of the inner ring bearings and expansion, to rece or eliminate Bearing radial clearance purposes.
Main structure of such advantages: high precision spindle. At the front spindle diameter φ230mm noodle on the end measuring spindle Beat value of 0.010mm. Φ230mm cylindrical spindle at the front end on the radial axis measurement value of Beat 0.005mm. The second structure of the spindle of a precision spindle accuracy than the first about 50% improve.
Main disadvantage of this structure:
The principal axis of the more complicated process, the spindle assembly also has the experience necessary to make the workers to operate the spindle achieve the desired numerical accuracy.
Third, the depth of the tool feed control
Required different processing screw diameter spiral groove depth is also different from the depth of the spiral groove mm from dozens to more than 100 millimeters range around the tool into the institutions required to feed the thousands of ring rotation in order to achieve a screw machining .
Feed because of the tool in the tool rotating at the same time achieve motion feed, so on a number of general machine tools used in mechanical, electrical control method of depth of cut does not apply to single-screw machine.
Single screw machine tools give agencies into the following different methods can be feed to control the depth of purpose.
The first is: friction clutch and electrical switches to control the depth of the tool feed
Its principle is to control depth of cut increases the tool cutter feed mechanism increases the load torque so that the tool feeding mechanism of the friction transmission chain slipping clutch, a mechanical linkage concurrent silent trigger electrical switches, optical signal prompted operator, when manual operator to disconnect the tool into the power sector.
The advantages of this control method are: the control method is simple and spare parts processing and operational power from the impact of a sudden.
Disadvantage are: processing of different diameter screw to adjust the clutch friction discs pressed the preload spring.
Material because of the density of each screw, and the hardness of the existence of subtle differences in the degree of cutting tools sharp differences exist, thus the accuracy of this control method was not too accurate, may lead to screw spiral groove depth tolerance is too large.
The second: use of an electromagnetic clutch, encoder control tool into the mix to the depth of
Tool feed system, equipped with electromagnetic clutch and a tool for detecting the number of rotating ring gear and a gun encoder.
It is a tool of control principle剛接觸hand screw surface encoder to start counting switch, then start counting counting device, when the rotary tool to pre-set number of laps when the cutting depth is reached, the electromagnetic clutch automatic off open to the power tool into the concurrent silent, optical signal parts prompted the operator has finished processing.
The detection device through the digital display shows the number of feed circles or feed. Torn off and the electromagnetic clutch, the tool does not only into the rotation with the vertical shaft to the sport.
The advantages of this control method are: the depth of the spiral groove screw tolerance control more accurate, because of several significant table shows the depth of processing, or want a few laps and the depth of processing or circle the number of operations is also very intuitive and user-friendly.
Disadvantage are: electrical control of machine tools at the same time more complex parts of this control method at the processing plant, if a sudden power failure, the prior data set will be lost.
If you add in the electrical control of the battery to power at the early-dimensional detection devices to maintain the job, the problem can be resolved.

Four, the control gear drive space
Single screw machine screw in the processing, e to the spiral groove in the rotary tool and the workpiece rotation to complete the synthesis process. Just cut into the workpiece when the tool in the tangential direction of rotation has been going on a greater resistance knife, cutting tool at the workpiece to be cut when the role of the spiral groove, the tool in the tangential direction of rotation has been going up against a smaller knife and even by the spiral groove thrust workpiece.
Because there is a box-hole processing machine tool, gear and other processing error, the tool axis of rotation of the drive space is too large, large amount of so-called open.
Detect drive way too much space is a fixed power input shaft and output shaft rotation shaking, in the case of the transmission structure of conventional design and manufacture of machine tools, the transmission output shaft angle space at more than ten degrees to the dozens of degrees. Transmission gap caused by too large spiral screw groove surface then there is obvious marks, thus affecting the machining accuracy of the screw.
Upon completion of the assembly machine tool axis of rotation of the drive space is too large, in fact are subject to various errors gear, creating a backlash of the gear is too large.
Machine tools in the mechanical transmission gear are used regardless of the accuracy of a few of the class, the designers take into account the gear manufacturing error, processing error box center distance, temperature, lubricating oil film thickness, the assembly error and other factors, machine design must ensure that transmission gear A certain amount of backlash, backlash decide the size of the gear tooth thickness tolerance size.
Single-screw machine has the Main Drive from other machine tool structure specificity. In order to rece transmission or reasonable gap single-screw machine tools currently used by the following two ways.
The first is: the installation at the output shaft brake
Tool at the output shaft rotating the location of cylindrical symmetry with radial brake, brake stand up to the tool front-end of the cylindrical rotary output shaft, brake for spring preload.
The working principle of the brake is generated by the friction brake to increase the output shaft damping, recing the sensitivity of the rotation axis.
Are: brake and easy does not change the structure of the original machine tool structure, the method of indirect rection to achieve the purpose of drive space, in practical applications there is a certain effect.
One disadvantage: the pre-spring brake tool because of the cylindrical output shaft to exert a greater radial force, in fact increases the load machine torque, resulting in increased motor power at the same time gears, bearings to accelerate wear and tear.
Disadvantage 2: pre-spring brake because of the output shaft of the cylindrical tool to exert a greater radial force on the possible geometry of the tool output shaft a negative impact on accuracy.

Conclusion: This article describes four areas from existing single-screw machine layout and structure, and put out the advantages and disadvantages of the list, because of the compressor plant single-screw machine tools and machine tool external Security information, the above introction there is inevitably one-sided and wrong, and are therefore single-screw compressor for the proction of reference works.

4. 哪位有機械方面的中英文對照的文獻或文章啊

About Sheet Metal Fabrication Services

Sheet metal fabrication services providers manufacture components by cutting, bending, rolling, forming, stamping and welding sheet metal. Components manufactured through sheet metal fabrication services are used in a variety of applications such as enclosures, computer equipment, HVAC components, kitchen and sanitary equipment, machine tools and other instrial applications. Sheet metal fabrication services include a diverse range of processes used to fashion sheet metal into usable procts. These processes may be broken down into three rough categories, cutting, forming, and finishing services.

Sheet metal cutting services includes a number of techniques used to cut metal into smaller pieces so that it can be molded or formed into components. Common types of sheet metal cutting involve shearing, electrical discharge machining (EDM), laser cutting, water jet and abrasive cutting. Shearing uses a specialized machine to cut sheet metal by applying shear stress. This process is used to cut large sheets of metal into smaller parts. Laser cutting machines use laser light to cut or etch holes or profiles. Laser cutting machines are very precise programmable pieces of equipment. Water jets and water abrasive jets rely on highly pressurized water (20,000 - 60,000 psi) flowing through a nozzle or "jewel" approximately 0.010" in diameter. Advantages include almost no material heating ring cutting, low side loads, and ability to achieve complex shapes and tight inside radii. Low fixturing costs and fast setup and programming times make this process very suitable for prototypes or short runs. It is most widely used for two-dimensional cutting; three-dimensional machining is possible in specialty applications

Wire electrical discharge machining (EDM) equipment is used to cut conctive materials using a thin electrode. The electrode is a thin wire (typically .004"-.012") that follows a programmed path. The wire does not physically contact the part. It is charged to a certain level and surrounded by de-ionized water. A spark is generated that jumps the gap and melts a small amount of material on the part.

Sheet metal forming processes include those actions used fashion metal into specific shapes or semi-finished pieces. Common techniques include bending and forming, rolling, stamping, punching, welding, and hardware and fastener creation. Bending and forming processes are used to shape the sheet metal to its final shape. In the rolling process, a series of roll stands is used to progressively shape or bend a strip of flat-rolled metal to a desired cross section. Stamping is the process of impressing surface definition and three-dimensional designs onto materials with pressurized tools and dies. Punching is the process of punching holes in the sheet metal. Welding is the joining of metals and metal parts by melting and re-forming a metal bond between materials, with or without additional filler metal. Hardware and fastener creation is the capability to supply and integrate hardware such as handles, latches and threaded, self-clinching fasteners used to provide threads in sheet metal that is too thin or soft to be tapped.

5. 哪位高人有機械類的中英文對照翻譯啊大概在三頁紙左右

My son Joey was born with ciub feet.The doctors assured us that with treatment he would be able to walk normally-but would never run very well.The first three years of his life were spent in surgery,casts and braces.By the time he was eight, you wouldn』t know he had a problem when you saw him walk.

6. 機械制圖國家標准里規定,英文字體是什麼字體

字母與數字:字體italic.shx高度5.0寬度因子0.7
漢字:字體仿宋高度5.0寬度因子0.7(注意 不是@仿宋)

7. 機械工程專業英語教程的目錄

PART 1 FOUNDATION OF MECHANICS
Unit 1 engineering drawings and tolerance
Unit 2 dimensional tolerances and surface poughness
Unit 3 basic concepts in machanicsUnit 4 movement analysis
Unit 5 kinematic synthesis
Unit 6 fundamentals of mechanical design
Unit 7 mechanism
Unit 8 gears
Unit 9 bearing
Unit 10 hydraulic system and its elements
Unit 11 insrial hydraulic circuits
Unit 12 engineer material
Unit 13 hot metalworking processing (I)
Unit 14 hot metalworking processing (I)
PART II MASS-REDUCING PROCESSES
Unit 15 characteristcs of mass-recing processes
Unit 16 chip formation
Unit 17 the tool material and the tool geometry
Unit 18 the surface quality
Unit 19 the single-point gutting tools
Unit 20 the Multipoint cutting tools
Unit 21 lathes
Unit 22 jigs and fixtures
PART III NUMERICALLY CONTROLLED MACHINE TOOLS
PART IV ADUANCED MANUFACTURING IECHNOLOGY
PART V MAINTENANCE
APPENDIX A MANUFACTURICNG MANAGEMENT
PAAENDIX B SELECTING MARKETS
PAAENDIX C HOW TO WRITE THE ENGLISH RESUME
APPENDIX D ENGLISH CULTURES
參考文獻

8. 機械工程及自動化的國際標准、國家標准、行業標准、企業標准各並列出中文名稱和編號准書號

你這個問題太寬泛了,機械工程的標准能有六七本5cm厚的書才能寫下。

9. 有關機械的中英文對照文章(最好6000字左右的)和一篇英文翻譯成中文的文章(英漢對照的)

電磁離合器

對壓縮機單螺桿專用加工機床的介紹更新時間

摘要:本文從四個方面介紹了國內現有單螺桿加工機床的布局和結構,並把優缺點一一列舉出來,由於壓縮機生產廠的單螺桿加工機床和機床資料對外保密,以上介紹難免有片面、不妥之處,因此僅供單螺桿壓縮機生產廠參考。
一、介紹機床的布局
壓縮機排氣量的大小決定了星輪、螺桿直徑的大小和嚙合中心距的大小,因此螺桿直徑的不同,機床的主軸與刀具的回轉中心也不同。為滿足加工不同直徑的螺桿,目前國內單螺桿加工機床的布局大致有以下幾種方案。
第一種:機床的主軸與刀具回轉中心的中心距為固定式
機床的主軸與刀具回轉中心的中心距為固定式,中心距不可調整。加工幾種直徑的螺桿就需要幾種中心距規格不同的機床。
優點:機床的結構簡單。
缺點:每種機床只能加工一種規格的螺桿,當市場上某種規格的壓縮機螺桿需要量大時,造成一台機床加工,其他機床閑置。
第二種:機床的主軸箱為可回轉式
機床可根據加工螺桿直徑的大小在加工前把主軸箱旋轉一個角度。這種主軸箱能夠回轉的機床是對上述第一種機床在使用方法上的改進,與第一種機床的結構基本相同。
優點:機床的結構簡單,能適應多種規格螺桿的加工。
缺點1:主軸箱旋轉後主軸回轉中心線與刀具回轉中心線間的距離不易精確測量。
缺點2:主軸箱旋轉後主軸前端面與刀具的回轉中心線間的距離減少,因此加工較大直徑的螺桿受到限制。
第三種:機床的主軸箱為橫向移動式
主軸箱底部與底座之間布置有矩形滑動導軌,主軸箱移動的方向垂直於主軸回轉中心線並垂直於刀具回轉中心線。主軸箱的動力通過花鍵軸傳給底座內的刀具進給機構。
根據加工螺桿直徑的大小,在加工前用手輪絲杠進給機構把主軸箱移動到適當位置,然後用螺釘將主軸箱固定在底座上。主軸箱的移動距離可用光柵尺檢測,位置誤差±0.005mm。
採用主軸箱可橫向移動的一個機床就可以加工直徑φ95~φ385mm之間任何一種規格的螺桿。
由於加工φ95~φ385mm直徑的螺桿,造成主軸前端面與刀具回轉中心線間的距離差值過大,因此在實際應用時設計成兩種規格的機床,一個機床加工φ95~φ205mm直徑的螺桿,另一個機床加工φ180~φ385mm直徑的螺桿。
優點:機床能適應多種規格螺桿的加工,每種規格的螺桿不需要配備相應的加工機床。
缺點:機床的結構和機床的裝配較前二種機床復雜,機床的造價也較前二種機床高。
二、介紹機床的主軸結構
機床主軸箱的水平主軸和底座上的立式的主軸精度的高低決定了被加工螺桿的精度,同時螺桿在壓縮機中以幾千轉的速度高速旋轉時,精度較差的螺桿會使壓縮機產生發熱、振動、效率低、磨損快等現象。
國內目前現有的單螺桿加工機床主軸結構大致有以下兩種方案。
第一種:軸承徑向游隙不可調的主軸結構
主軸前軸承採用1個雙列圓柱滾子軸承和兩個推力球軸承組合,該主軸使用雙列圓柱滾子軸承承受徑向切削力,使用兩個推力球軸承承受軸向切削力。
主軸後軸承一般採用1個雙列圓柱滾子軸承或採用1個向心球軸承。
這種主軸結構的優點:主軸的加工和裝配簡單,造價較低。
缺點1:由於主軸軸承的徑向游隙不可調整,所以主軸精度較差。雖然可以利用軸承的內徑和軸徑的過盈配合來消除軸承的徑向游隙,但每個軸承的內徑和徑向游隙不是一個固定值,因此設計和加工時很難給准軸徑與軸承內徑的配合公差。
缺點2:在市場上很難買到國產或進口的C、D級或P4、P5級的推力球軸承,機床生產廠常用普通級軸承替代使用,此舉也影響了主軸精度的提高。
軸承徑向游隙不可調的主軸結構適用於一般精度的普通機床,不適用於對主軸精度要求較高的機床。
第二種:軸承徑向游隙可調的主軸結構
主軸前軸承採用一個P4級圓錐孔的雙列圓柱滾子軸承和1個P4級的雙列向心推力球軸承組合。該主軸使用圓錐孔的雙列圓柱滾子軸承承受徑向切削力,使用雙列向心推力球軸承承受軸向切削力和部分徑向切削力。
主軸後軸承一般採用1個P5級圓錐孔的雙列圓柱滾子軸承。
圓錐孔雙列圓柱滾子軸承的內圈和配合軸徑均為1:12圓錐,用圓螺母鎖緊軸承則使軸承在軸向產生一個位移並使軸承的內圈膨脹,從而達到減少或消除軸承徑向游隙的目的。
這種主軸結構的優點:主軸精度較高。在主軸前端面φ230mm直徑上測量主軸的端面跳動值為0.010mm。在主軸前端φ230mm外圓上測量主軸的徑向跳動值為0.005mm。第二種結構的主軸精度比第一種主軸精度提高50%左右。
這種主軸結構的缺點:
主軸的加工工藝較復雜,主軸的裝配也需要有經驗的工人操作才能使主軸精度達到理想數值。
三、刀具進給深度的控制
不同直徑的螺桿需要加工螺旋槽的深度也不同,螺旋槽的深度從幾十毫米到一百多毫米不等,刀具進給機構大約需要旋轉進刀幾千圈才能完成一個螺桿零件的加工。
由於刀具進給機構在刀具旋轉的同時還要完成進刀動作,所以一些在普通機床上常用的機械、電氣控制切深的方法都不適用於單螺桿加工機床。
單螺桿加工機床的刀具進給機構採用以下不同的方法都可以達到控制進刀深度的目的。
第一種:摩擦離合器和電氣開關控制刀具進給深度
它的控制原理是刀具切深增大時刀具進給機構的負載扭距增大,使刀具進給機構傳動鏈中的摩擦離合器打滑,一個機械連桿機構觸發電氣開關並發出聲、光信號提示操作者,此時操作者人工操作斷開刀具進給機構的動力。
這種控制方法的優點是:控制方法簡單及零件加工和操作不受突然斷電的影響。
缺點是:加工不同直徑的螺桿需要調整摩擦離合器壓緊碟簧的預緊力。
由於每個螺桿材質的密度、硬度存在細微差異及刀具鋒利程度也存在差異,因此使這種控制方法的精度不太准確,可能導致螺桿螺旋槽的深度公差過大。
第二種:用電磁離合器、編碼器組合控制刀具進給深度
刀具進給系統中,裝有電磁離合器及一對用於檢測刀具轉動圈數的測速齒輪和一個編碼器。

結論:本文從四個方面介紹了國內現有單螺桿加工機床的布局和結構,並把優缺點一一列舉出來,由於壓縮機生產廠的單螺桿加工機床和機床資料對外保密,以上介紹難免有片面、不妥之處,因此僅供單螺桿壓縮機生產廠參考。

Dedicated to the single screw compressor machine updated the Introction

Abstract: This paper describes four areas from the existing single-screw machine layout and structure, and put out the advantages and disadvantages of the list, because of the compressor plant single-screw machine tools and machine tool external Security information, the above introction there is inevitably one-sided and wrong, and are therefore single-screw compressor for the proction of reference works.
First, introce the layout of machine tools
Decide the size of the compressor displacement of the stars round, screw diameter, mesh size and the size of the center distance, so different in diameter screw, machine tool spindle and the rotary center are also different. To meet the processing of different diameter screw, single screw Currently the layout of machine tools in general there are several options.
The first is: machine tool rotary tool spindle center and the center distance for the fixed
Machine tool rotary tool spindle center and the center distance for the fixed, can not adjust the center distance. Processing of several of the screw diameter on the center distance required several different specifications of the machine.
Advantages: simple structure of the machine.
Disadvantage: each machine can only process a specification of the screw, when the market on a certain specification requirements when the screw compressor, resulting in a machine, other machine idle.
The second: the machine tool spindle box for rotary
Processing screw machine according to the size of the diameter at the processing before a point of rotating spindle box. Spindle box that the machine can turn on a machine at the above-mentioned article on the use of the improvements, with the first structure of a machine tool is basically the same.
Advantages: the structure of machine tool easy to adapt to a variety of specifications of the processing screw.
One disadvantage: after the rotating spindle box and the tool spindle turning center line distance between the center line of accurate measurement difficult.
2 disadvantage: after the rotating spindle spindle box and the front surface of the rotary cutter centerline distance between the rection of the larger diameter of the screw processing is limited.
The third: the machine tool spindle box for horizontal mobile
Box at the bottom of the spindle and the base there is arranged between the rectangular sliding rail, spindle box perpendicular to the direction of movement of spindle centerline and perpendicular to the centerline of the tool rotation. Through the power of the spindle box spline shaft to the base of the tool feed mechanism.
Screw diameter, according to the size of the processing in the processing of the previous round by hand to the body put into the screw spindle box moved to the appropriate location, and then screw the spindle box on a fixed base. Spindle box available from the mobile Grating detection, position error ± 0.005mm.
Horizontal spindle box can be used as a mobile machine can process diameter φ95 ~ φ385mm any kind between the screw specifications.
Φ95 ~ φ385mm processing because of the diameter of the screw, causing the front surface and the tool spindle rotation the distance between the center line of the margin is too large, the actual application in the design specifications of the machine into two, a φ95 ~ φ205mm machine screw diameter Another φ180 ~ φ385mm machine screw diameter.
Advantages: a variety of tools to adapt to the specifications of the processing screw, each screw specifications need not be provided with the appropriate machine tools.
Disadvantage: the structure of machine tools and machine tool assembly of the two kinds of more complex machine tools, machine tools than the cost of two kinds of machine tools before the high.
Second, introce the structure of machine tool spindle
The level of machine tool spindle box on the main axis and the base of the vertical axis determines the degree of precision was the precision screw machining, at the same time screw compressor at a speed of thousands of high-speed rotary switch, the accuracy of the screw will be less so that the compressor have a fever, vibration, low efficiency, such as wear and tear situation quickly.
Currently available single-screw machine spindle structure of the program has the following two.
The first is: bearing radial clearance is not adjustable spindle structure
Before spindle bearing out the use of one pairs of cylindrical roller bearings and thrust ball bearing combination of both, the main use of double row cylindrical roller bearings under radial cutting force, the use of two ball bearings to bear axial thrust cutting force.
After the general adoption of the spindle bearings out one pairs of cylindrical roller bearings or a ball bearing to the heart.
Main advantages of this structure: the main axis of the processing and assembly of simple, low cost.
One disadvantage: because the main axis of the radial bearing clearance can not be adjusted so poor precision spindle. Although the use of bearings and shaft diameter fit to eliminate the radial bearing clearance, but each bearing diameter and radial clearance is not a fixed value, so it is difficult to design and processing to the quasi-axial-radial and bearings with bore tolerances.
2 disadvantage: it is very difficult to buy in the market of domestically proced or imported, C, D or P4, P5 class thrust ball bearings, machine tool manufacturing plant commonly used alternative to the use of ordinary class bearings, which also affected the accuracy of the enhance spindle.
Bearing radial clearance adjustable spindle structure do not apply to the general accuracy of the general machine tools, does not apply to require a higher accuracy of the spindle of machine tools.
The second: the radial bearing clearance adjustable spindle structure
Before the adoption of a spindle bearing P4 class of double row tapered hole cylindrical roller bearings and a P4-class double row ball bearing thrust to the combination of heart. The use of the spindle hole of the double row tapered cylindrical roller bearings under radial cutting force, the use of double row ball bearing thrust to the heart to bear part of the axial and radial cutting force cutting force.
Spindle bearings generally used after a P5 class of double row tapered hole cylindrical roller bearings.
Double row tapered hole cylindrical roller bearings with inner ring and shaft are tapered 1:12, bearing lock nut with a round led a bearing in the axial displacement of the inner ring bearings and expansion, to rece or eliminate Bearing radial clearance purposes.
Main structure of such advantages: high precision spindle. At the front spindle diameter φ230mm noodle on the end measuring spindle Beat value of 0.010mm. Φ230mm cylindrical spindle at the front end on the radial axis measurement value of Beat 0.005mm. The second structure of the spindle of a precision spindle accuracy than the first about 50% improve.
Main disadvantage of this structure:
The principal axis of the more complicated process, the spindle assembly also has the experience necessary to make the workers to operate the spindle achieve the desired numerical accuracy.
Third, the depth of the tool feed control
Required different processing screw diameter spiral groove depth is also different from the depth of the spiral groove mm from dozens to more than 100 millimeters range around the tool into the institutions required to feed the thousands of ring rotation in order to achieve a screw machining .
Feed because of the tool in the tool rotating at the same time achieve motion feed, so on a number of general machine tools used in mechanical, electrical control method of depth of cut does not apply to single-screw machine.
Single screw machine tools give agencies into the following different methods can be feed to control the depth of purpose.
The first is: friction clutch and electrical switches to control the depth of the tool feed
Its principle is to control depth of cut increases the tool cutter feed mechanism increases the load torque so that the tool feeding mechanism of the friction transmission chain slipping clutch, a mechanical linkage concurrent silent trigger electrical switches, optical signal prompted operator, when manual operator to disconnect the tool into the power sector.
The advantages of this control method are: the control method is simple and spare parts processing and operational power from the impact of a sudden.
Disadvantage are: processing of different diameter screw to adjust the clutch friction discs pressed the preload spring.
Material because of the density of each screw, and the hardness of the existence of subtle differences in the degree of cutting tools sharp differences exist, thus the accuracy of this control method was not too accurate, may lead to screw spiral groove depth tolerance is too large.
The second: use of an electromagnetic clutch, encoder control tool into the mix to the depth of
Tool feed system, equipped with electromagnetic clutch and a tool for detecting the number of rotating ring gear and a gun encoder.
It is a tool of control principle剛接觸hand screw surface encoder to start counting switch, then start counting counting device, when the rotary tool to pre-set number of laps when the cutting depth is reached, the electromagnetic clutch automatic off open to the power tool into the concurrent silent, optical signal parts prompted the operator has finished processing.
The detection device through the digital display shows the number of feed circles or feed. Torn off and the electromagnetic clutch, the tool does not only into the rotation with the vertical shaft to the sport.
The advantages of this control method are: the depth of the spiral groove screw tolerance control more accurate, because of several significant table shows the depth of processing, or want a few laps and the depth of processing or circle the number of operations is also very intuitive and user-friendly.
Disadvantage are: electrical control of machine tools at the same time more complex parts of this control method at the processing plant, if a sudden power failure, the prior data set will be lost.
If you add in the electrical control of the battery to power at the early-dimensional detection devices to maintain the job, the problem can be resolved.

Four, the control gear drive space
Single screw machine screw in the processing, e to the spiral groove in the rotary tool and the workpiece rotation to complete the synthesis process. Just cut into the workpiece when the tool in the tangential direction of rotation has been going on a greater resistance knife, cutting tool at the workpiece to be cut when the role of the spiral groove, the tool in the tangential direction of rotation has been going up against a smaller knife and even by the spiral groove thrust workpiece.
Because there is a box-hole processing machine tool, gear and other processing error, the tool axis of rotation of the drive space is too large, large amount of so-called open.
Detect drive way too much space is a fixed power input shaft and output shaft rotation shaking, in the case of the transmission structure of conventional design and manufacture of machine tools, the transmission output shaft angle space at more than ten degrees to the dozens of degrees. Transmission gap caused by too large spiral screw groove surface then there is obvious marks, thus affecting the machining accuracy of the screw.
Upon completion of the assembly machine tool axis of rotation of the drive space is too large, in fact are subject to various errors gear, creating a backlash of the gear is too large.
Machine tools in the mechanical transmission gear are used regardless of the accuracy of a few of the class, the designers take into account the gear manufacturing error, processing error box center distance, temperature, lubricating oil film thickness, the assembly error and other factors, machine design must ensure that transmission gear A certain amount of backlash, backlash decide the size of the gear tooth thickness tolerance size.
Single-screw machine has the Main Drive from other machine tool structure specificity. In order to rece transmission or reasonable gap single-screw machine tools currently used by the following two ways.
The first is: the installation at the output shaft brake
Tool at the output shaft rotating the location of cylindrical symmetry with radial brake, brake stand up to the tool front-end of the cylindrical rotary output shaft, brake for spring preload.
The working principle of the brake is generated by the friction brake to increase the output shaft damping, recing the sensitivity of the rotation axis.
Are: brake and easy does not change the structure of the original machine tool structure, the method of indirect rection to achieve the purpose of drive space, in practical applications there is a certain effect.
One disadvantage: the pre-spring brake tool because of the cylindrical output shaft to exert a greater radial force, in fact increases the load machine torque, resulting in increased motor power at the same time gears, bearings to accelerate wear and tear.
Disadvantage 2: pre-spring brake because of the output shaft of the cylindrical tool to exert a greater radial force on the possible geometry of the tool output shaft a negative impact on accuracy.

Conclusion: This article describes four areas from existing single-screw machine layout and structure, and put out the advantages and disadvantages of the list, because of the compressor plant single-screw machine tools and machine tool external Security information, the above introction there is inevitably one-sided and wrong, and are therefore single-screw compressor for the proction of reference works.

與機械工程標准目錄中英文對照相關的資料

熱點內容
蘇州假山景觀設計工程 瀏覽:862
哈爾濱工程造價招聘 瀏覽:937
建築工程土建勞務分包 瀏覽:632
道路監理工程師 瀏覽:476
安徽工程大學機電學院在本校嗎 瀏覽:370
河北工程大學保研率多少 瀏覽:287
有學質量工程師的書嗎 瀏覽:479
康樂縣建築工程公司 瀏覽:569
助理工程師二級 瀏覽:872
注冊安全工程師初級考試時間 瀏覽:901
食品科學與工程專業課題研究 瀏覽:881
工程造價圖紙建模 瀏覽:888
遼寧恆潤建設工程有限公司 瀏覽:93
實行施工總承包的工程項目 瀏覽:737
道路橋梁工程技術興趣愛好 瀏覽:316
密歇根理工大學電氣工程專業 瀏覽:388
廣西交通工程質量監督站 瀏覽:31
四川大學材料科學與工程學院考研參考書目 瀏覽:858
有線電視工程建設管理條例 瀏覽:270
雲南工程監理公司排名 瀏覽:673