① 蛋白質工程的優點是什麼
我們生物課本的原話:蛋白質工程的優點是可以創造出自然界中原本不存在的蛋白質.
② 蛋白質工程主要有哪些研究手段
蛋白質工程
所謂蛋白質工程,就是利用基因工程手段,包括基因的定點突變和基因表達對蛋白質進行改造,以期獲得性質和功能更加完善的蛋白質分子。
蛋白質是生命的體現者,離開了蛋白質,生命將不復存在。可是,生物體內存在的天然蛋白質,有的往往不盡人意,需要進行改造。由於蛋白質是由許多氨基酸按一定順序連接而成的,每一種蛋白質有自己獨特的氨基酸順序,所以改變其中關鍵的氨基酸就能改變蛋白質的性質。而氨基酸是由三聯體密碼決定的,只要改變構成遺傳密碼的一個或兩個鹼基就能達到改造蛋白質的目的。蛋白質工程的一個重要途徑就是根據人們的需要,對負責編碼某種蛋白質的基因重新進行設計,使合成的蛋白質變得更符合人類的需要。這種通過造成一個或幾個鹼基定點突變,以達到修飾蛋白質分子結構目的的技術,稱為基因定點突變技術。
蛋白質工程是在基因重組技術、生物化學、分子生物學、分子遺傳學等學科的基礎之上,融合了蛋白質晶體學、蛋白質動力學、蛋白質化學和計算機輔助設計等多學科而發展起來的新興研究領域。其內容主要有兩個方面:根據需要合成具有特定氨基酸序列和空間結構的蛋白質;確定蛋白質化學組成、空間結構與生物功能之間的關系。在此基礎之上,實現從氨基酸序列預測蛋白質的空間結構和生物功能,設計合成具有特定生物功能的全新的蛋白質,這也是蛋白質工程最根本的目標之一。
目前,蛋白質工程尚未有統一的定義。一般認為蛋白質工程就是通過基因重組技術改變或設計合成具有特定生物功能的蛋白質。實際上蛋白質工程包括蛋白質的分離純化,蛋白質結構和功能的分析、設計和預測,通過基因重組或其它手段改造或創造蛋白質。從廣義上來說,蛋白質工程是通過物理、化學、生物和基因重組等技術改造蛋白質或設計合成具有特定功能的新蛋白質。
[編輯本段]
蛋白質工程的基本途徑
從預期的蛋白質功能出發→設計預期的蛋白質結構→推測應有的氨基酸序列→找到相對應的核糖核苷酸序列(RNA)→找到相對應的脫氧核糖核苷酸序列(DNA)
[編輯本段]
【研究的核心內容】
蛋白質結構分析
蛋白質工程的核心內容之一就是收集大量的蛋白質分子結構的信息,以便建立結構與功能之間關系的資料庫,為蛋白質結構與功能之間關系的理論研究奠定基礎。三維空間結構的測定是驗證蛋白質設計的假設即證明是新結構改變了原有生物功能的必需手段。晶體學的技術在確定蛋白質結構方面有了很大發展,但是最明顯的不足是需要分離出足夠量的純蛋白質(幾毫克~幾十毫克),制備出單晶體,然後再進行繁雜的數據收集、計算和分析。
另外,蛋白質的晶體狀態與自然狀態也不盡相同,在分析的時候要考慮到這個問題。核磁共振技術可以分析液態下的肽鏈結構,這種方法繞過了結晶、X-射線衍射成像分析等難點,直接分析自然狀態下的蛋白質的結構。現代核磁共振技術已經從一維發展到三維,在計算機的輔助下,可以有效地分析並直接模擬出蛋白質的空間結構、蛋白質與輔基和底物結合的情況以及酶催化的動態機理。從某種意義上講,核磁共振可以更有效地分析蛋白質的突變。國外有許多研究機構正在致力於研究蛋白質與核酸、酶抑制劑與蛋白質的結合情況,以開發
具有高度專一性的葯用蛋白質。
結構、功能的設計和預測
根據對天然蛋白質結構與功能分析建立起來的資料庫里的數據,可以預測一定氨基酸序列肽鏈空間結構和生物功能;反之也可以根據特定的生物功能,設計蛋白質的氨基酸序列和空間結構。通過基因重組等實驗可以直接考察分析結構與功能之間的關系;也可以通過分子動力學、分子熱力學等,根據能量最低、同一位置不能同時存在兩個原子等基本原則分析計算蛋白質分子的立體結構和生物功能。雖然這方面的工作尚在起步階段,但可預見將來能建立一套完整的理論來解釋結構與功能之間的關系,用以設計、預測蛋白質的結構和功能。
創造和改造
蛋白質的改造,從簡單的物理、化學法到復雜的基因重組等等有多種方法。物理、化學法:對蛋白質進行變性、復性處理,修飾蛋白質側鏈官能團,分割肽鏈,改變表面電荷分布促進蛋白質形成一定的立體構像等等;生物化學法:使用蛋白酶選擇性地分割蛋白質,利用轉糖苷酶、酯酶、醯酶等去除或連接不同化學基團,利用轉醯胺酶使蛋白質發生膠連等等。以上方法只能對相同或相似的基團或化學鍵發生作用,缺乏特異性,不能針對特定的部位起作用。採用基因重組技術或人工合成DNA,不但可以改造蛋白質而且可以實現從頭合成全新的蛋白質。
蛋白質是由不同氨基酸按一定順序通過肽鍵連接而成的肽構成的。氨基酸序列就是蛋白質的一級結構,它決定著蛋白質的空間結構和生物功能。而氨基酸序列是由合成蛋白質的基因的DNA序列決定的,改變DNA序列就可以改變蛋白質的氨基酸序列,實現蛋白質的可調控生物合成。在確定基因序列或氨基酸序列與蛋白質功能之間關系之前,宜採用隨機誘變,造成鹼基對的缺失、插入或替代,這樣就可以將研究目標限定在一定的區域內,從而大大減少基因分析的長度。一旦目標DNA明確以後,就可以運用定位突變等技術來進行研究。
定位突變蛋白質中的氨基酸是由基因中的三聯密碼決定的,只要改變其中的一個或兩個就可以改變氨基酸。通常是改變某個位置的氨基酸,研究蛋白質結構、穩定性或催化特性。噬菌體M13的生活周期有二個階段,在噬菌體粒子中其基因組為單鏈,侵入宿主細胞以後,通過復制以雙鏈形式存在。將待研究的基因插入載體M13,製得單鏈模板,人工合成一段寡核苷酸(其中含一個或幾個非配對鹼基)作為引物,合成相應的互補鏈,用T4連接酶連接成閉環雙鏈分子。經轉染大腸桿菌,雙鏈分子在胞內分別復制,因此就得到兩種類型的噬菌斑,含錯配鹼基的就為突變型。再轉入合適的表達系統合成突變型蛋白質。
盒式突變1985年Wells提出的一種基因修飾技術——盒式突變,一次可以在一個位點上產生 20種不同氨基酸的突變體,可以對蛋白質分子中重要氨基酸進行「飽和性」分析。利用定位突變在擬改造的氨基酸密碼兩側造成兩個原載體和基因上沒有的內切酶切點,用該內切酶消化基因,再用合成的發生不同變化的雙鏈DNA片段替代被消化的部分。這樣一次處理就可以得到多種突變型基因。
PCR技術DNA聚合酶鏈式反應是應用最廣泛的基因擴增技術。以研究基因為模板,用人工合成的寡核苷酸(含有一個或幾個非互補的鹼基)為引物,直接進行基因擴增反應,就會產生突變型基因。分離出突變型基因後,在合適的表達系統中合成突變型蛋白質。這種方法直接、快速和高效。
高突變率技術從大量的野生型背景中篩選出突變型是一項耗時、費力的工作。有兩種新的突變方法具有較高的突變率:①硫代負鏈法:核苷酸間磷酸基的氧被硫替代後修飾物(α-(S)-dCTP)對某些內切酶有耐性,在有引物和(α-(S)-dCTP)存在下合成負鏈,然後用內切酶處理,結果僅在正鏈上產生「缺口」,用核苷酸外切酶III從3『→5『擴大缺口並超過負鏈上錯配的核苷酸,在聚合酶作用下修復正鏈,就可以得到二條鏈均為突變型的基因;②UMP正鏈法:大腸桿菌突變株RZ1032中缺少脲嘧啶糖苷酶和UTP酶,M13在這種宿主中可以用脲嘧啶(U)替代胸腺嘧啶(T)摻入模板而不被修飾。用這種含U的模板產生的突變雙鏈轉化正常大腸桿菌,結果含U的正鏈被寄主降解,而突變型負鏈保留並復制。
蛋白質融合將編碼一種蛋白質的部分基因移植到另一種蛋白質基因上或將不同蛋白質基因的片段組合在一起,經基因克隆和表達,產生出新的融合蛋白質。這種方法可以將不同蛋白質的特性集中在一種蛋白質上,顯著地改變蛋白質的特性。現在研究的較多的所謂 「嵌合抗體」和「人緣化抗體」等,就是採用的這種方法。
[編輯本段]
【實際應用】
提高蛋白質的穩定性
葡萄糖異構酶(GI)在工業上應用廣泛,為提高其熱穩定性,朱國萍等人在確定第138位甘氨酸 (Gly138)為目標氨基酸後,用雙引物法對GI基因進行體外定點誘變,以脯氨酸(Pro138)替代Gly138,含突變體的重組質粒在大腸桿菌中表達,結果突變型GI比野生型的熱半衰期長一倍;最適反應溫度提高10~12℃;酶比活相同。據分析,Pro替代Gly138後,可能由於引入了一個吡咯環,該側鏈剛好能夠填充於Gly138附近的空洞,使蛋白質空間結構更具剛性,從而提高了酶的熱穩定性。
融合蛋白質
腦啡肽(Enk)N端5肽線形結構是與δ型受體結合的基本功能區域,干擾素(IFN)是一種廣譜抗病毒抗腫瘤的細胞因子。黎孟楓等人化學合成了EnkN端5肽編碼區,通過一連接3肽編碼區與人α1型IFN基因連接,在大腸桿菌中表達了這一融合蛋白。以體外人結腸腺癌細胞和多形膠質瘤細胞為模型,採用3H-胸腺嘧啶核苷摻入法證明該融合蛋白抑制腫瘤細胞生長的活性顯著高於單純的IFN,通過 Naloxone競爭阻斷實驗證明,抑制活性的增高確由Enk導向區介導。
蛋白質活性的改變
通常飯後30~60min,人血液中胰島素的含量達到高峰,120~180min內恢復到基礎水平。而目前臨床上使用的胰島素制劑注射後120min後才出現高峰且持續180~240min,與人生理狀況不符。實驗表明,胰島素在高濃度(大於 10-5mol/L)時以二聚體形式存在,低濃度時(小於10-9mol/L)時主要以單體形式存在。設計速效胰島素原則就是避免胰島素形成聚合體。類胰島素生長因子-I(IGF-I)的結構和性質與胰島素具有高度的同源性和三維結構的相似性,但IGF-I不形成二聚體。IGF-I的B結構域(與胰島素B 鏈相對應)中B28-B29氨基酸序列與胰島素B鏈的B28-B29相比,發生顛倒。因此,將胰島素B鏈改為B28Lys-B29Pro,獲得單體速效胰島素。該速效胰島素已通過臨床實驗。
治癌酶的改造
癌症的基因治療分二個方面:葯物作用於癌細胞,特異性地抑制或殺死癌細胞;葯物保護正常細胞免受化學葯物的侵害,可以提高化學治療的劑量。皰症病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其他結構類似物如GANCICLOVIR和 ACYCLOVIR無環鳥苷磷酸化。GANCICLOVIR和ACYCLOVIR缺少3『端羥基,就可以終止DNA的合成,從而殺死癌細胞。HSV-TK 催化GANCICLOVIR和ACYCLOVIR的能力可以通過基因突變來提高。從大量的隨機突變中篩選出一種,在酶活性部位附近有6個氨基酸被替換,催化能力分別提高43和20倍。O6-烷基-鳥嘌呤是DNA經烷基化劑(包括化療用亞硝基葯物)處理以後形成的主要誘變劑和細胞毒素,所以這些亞硝基葯物的使用劑量受到限制。O6-烷基-鳥嘌呤-DNA烷基轉移酶O6-Alkylguanine-DNAalkyltransferase(AGT)能夠將鳥嘌呤O6上的烷基去除掉,起到保護作用。通過反向病毒轉染,人類AGT在鼠骨髓細胞中表達並起到保護作用。通過突變處理,得到一些正突變AGT基因且活性都比野生型的高,經檢查發現一個突變基因中的第139位脯氨酸被丙氨酸替代。
嵌合抗體和人緣化抗體
免疫球蛋白呈Y型,由二條重鏈和二條輕鏈通過二硫鍵相互連接而構成。每條鏈可分為可變區(N 端)和恆定區(C端),抗原的吸附位點在可變區,細胞毒素或其他功能因子的吸附位點在恆定區。每個可變區中有三個部分在氨基酸序列上是高度變化,在三維結構上是處在β折疊端頭的鬆散結構(CDR),是抗原的結合位點,其餘部分為CDR的支持結構。不同種屬的CDR結構是保守的,這樣就可以通過蛋白質工程對抗體進行改造。
鼠單克隆抗體被人免疫系統排斥,它潛在的治療作用得不到利用。嵌合抗體就是用人抗體的恆定區替代鼠單克隆抗體的恆定區,這樣它的免疫原性就顯著下降。如用於治療直腸結腸腺癌(COLORECTALADENOCARCINOMA)的單克隆抗體 Mab17-1A。盡管嵌合抗體還存在著免疫原的問題,但仍有幾種嵌合抗體通過了臨床實驗。所謂人緣化抗體就是將抗原吸附區域嫁接到人抗體上,這樣抗體上的外源肽鏈降低到最小,免疫原性也就最小。但是,僅將CDR轉接到人抗體上,其抗原吸附能力很小,必須帶上幾個框架氨基酸殘基,才能保持原有的吸附力。這樣就存在免疫原性與抗原吸附力之間的矛盾。通過逐個氨基酸替代或計算機模擬分析,可在保持原有吸附力的基礎之上,盡可能地降低免疫原性。第一個臨床上應用的用於治療淋巴肉芽腫病和風濕性關節炎的人緣化抗體CAMPATH-1H,盡管療效顯著,但仍有半數以上的患者有免疫反應。而其他人緣化抗體如治療脊髓性白血病的ANTI-CD33等,其免疫反應可以忽略不計。
蛋白質工程進展
當前,蛋白質工程是發展較好、較快的分子工程。這是因為在進行蛋白質分子設計後,已可應用高效的基因工程來進行蛋白的合成。最早的蛋白工程是福什特(Forsht)等在1982—1985年間對酪氨醯—t—RNA合成酶的分子改造工作。他根據 XRD(X射線衍射)實測該酶與底物結合部位結構,用定位突變技術改變與底物結合的氨基酸殘基,並用動力學方法測量所得變體酶的活性,深入探討了酶與底物的作用機制。佩里(Perry)1984年通過將溶菌酶中Ile(3)改成Cys(3),並進一步氧化生成 Cys(3)-Cys(97)二硫鍵,使酶熱穩定性提高,顯著改進了這種食品工業用酶的應用價值。1987年福什特通過將枯草桿菌蛋白酶分子表面的 Asp(99)和Glu(156)改成Lys,而導致了活性中心His(64)質子pKa從7下降到6,使酶在pH=6時的活力提高10倍。工業用酶最佳 pH的改變預示可帶來巨大經濟效益。蛋白工程還可對酶的催化活性、底物專一性、抗氧化性、熱變性、鹼變性等加以改變。由此可以看出蛋白工程的威力及其光輝前景。上述各例是通過對關鍵氨基酸殘基的置換與增刪進行蛋白工程的一類方法。另一類是以某個典型的折疊進行「從頭設計」的方法。1988年杜邦公司宣布,成功設計並合成了由四段反平行α—螺旋組成為73個氨基殘基的成果。這顯示,按人們預期要求,通過從頭設計以折疊成新蛋白的目標已是可望又可及了。預測結構的模型法,在奠定分子生物學基礎時起過重大作用。蛋白的一級結構,包含著關於高級結構的信息這一點已日益明確。結合模型法,通過分子工程來預測高級結構,已成為人們所矚目的問題了。
蛋白質工程匯集了當代分子生物學等學科的一些前沿領域的最新成就,它把核酸與蛋白質結合、蛋白質空間結構與生物功能結合起來研究。蛋白質工程將蛋白質與酶的研究推進到嶄新的時代,為蛋白質和酶在工業、農業和醫葯方面的應用開拓了誘人的前景。蛋白質工程開創了按照人類意願改造、創造符合人類需要的蛋白質的新時期。
蛋白質工程的前景
蛋白質工程取得的進展向人們展示出誘人的前景。例如,科學家通過對胰島素的改造,已使其成為速效型葯品。如今,生物和材料科學家正積極探索將蛋白質工程應用於微電子方面。用蛋白質工程方法製成的電子元件,具有體積小、耗電少和效率高的特點,因此有極為廣闊的發展前景。
③ 蛋白質工程與基因工程相比,其突出特點是()A.基因工程原則上能生產任何蛋白質B.蛋白質工程能對現
A、基因工程原則上能生產自然界原有的蛋白質,故A錯誤;
B、蛋白質工程能對現有的蛋白質進行改造,或製造一種新的蛋白質,故B正確;
C、蛋白質工程中合成蛋白質需要經過轉錄和翻譯,故C錯誤;
D、蛋白質工程是在基因工程的基礎上,延伸出來的第二代基因工程,故D錯誤.
故選:B.
④ 基因工程與蛋白質工程的主要區別是什麼
1、作用不同
蛋白質工程就是通過對蛋白質化學、蛋白質晶體學和蛋白質動力學的研究,獲得有關蛋白質理化特性和分子特性的信息。
基因工程又稱基因拼接技術和DNA重組技術,是以分子遺傳學為理論基礎,以分子生物學和微生物學的現代方法為手段,將不同來源的基因按預先設計的藍圖,在體外構建雜種DNA分子,然後導入活細胞,以改變生物原有的遺傳特性、獲得新品種、生產新產品。
2、手段不同
基因工程技術為基因的結構和功能的研究提供了有力的手段。
蛋白質工程在此基礎上對編碼蛋白質的基因進行有目的的設計和改造,通過基因工程技術獲得可以表達蛋白質的轉基因生物系統,這個生物系統可以是轉基因微生物、轉基因植物、轉基因動物,甚至可以是細胞系統。
3、工作原理不同
基因工程是用人為的方法將所需要的某一供體生物的遺傳物質——DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的復制和表達,從而獲得新物種的一種嶄新技術。
實際上蛋白質工程包括蛋白質的分離純化,蛋白質結構和功能的分析、設計和預測,通過基因重組或其它手段改造或創造蛋白質。從廣義上來說,蛋白質工程是通過物理、化學、生物和基因重組等技術改造蛋白質或設計合成具有特定功能的新蛋白質。
⑤ 蛋白質組學主要包括哪些分析技術及各自特點
為探究生物進程的分子機制,需要確定介導這個過程的蛋白質-蛋白質間的相互作用。研究蛋白質間相互作用的主要技術總結如下:一、酵母雙雜交系統酵母雙雜交系統是當前廣泛用於蛋白質相互作用組學研究的一種重要方法。其原理是當靶蛋白和誘餌蛋白特異結合後,誘餌蛋白結合於報道基因的啟動子,啟動報道 基因在酵母細胞內的表達,如果檢測到報道基因的表達產物,則說明兩者之間有相互作用,反之則兩者之間沒有相互作用。將這種技術微量化、陣列化後則可用於大 規模蛋白質之間相互作用的研究。在實際工作中,人們根據需要發展了單雜交系統、三雜交系統和反向雜交系統等。Angermayr等設計了一個SOS蛋白介 導的雙雜交系統。可以研究膜蛋白的功能,豐富了酵母雙雜交系統的功能。此外,酵母雙雜交系統的作用也已擴展至對蛋白質的鑒定。二、噬茵體展示技術在編碼噬菌體外殼蛋白基因上連接一單克隆抗體的DNA序列,當噬菌體生長時,表面就表達出相應的單抗,再將噬菌體過柱,柱上若含目的蛋白,就會與相應抗體 特異性結合,這被稱為噬菌體展示技術。此技術也主要用於研究蛋白質之間的相互作用,不僅有高通量及簡便的特點,還具有直接得到基因、高選擇性的篩選復雜混 合物、在篩選過程中通過適當改變條件可以直接評價相互結合的特異性等優點。目前,用優化的噬菌體展示技術,已經展示了人和鼠的兩種特殊細胞系的cDNA文 庫,並分離出了人上皮生長因子信號傳導途徑中的信號分子。三、等離子共振技術表 面等離子共振技術(Surface Plasmon Resonance,SPR)已成為蛋白質相互作用研究中的新手段。它的原理是利用一種納米級的薄膜吸附上「誘餌蛋白」,當待測蛋白與誘餌蛋白結合後,薄 膜的共振性質會發生改變,通過檢測便可知這兩種蛋白的結合情況。SPR技術的優點是不需標記物或染料,反應過程可實時監控。測定快速且安全,還可用於檢測 蛋白一核酸及其它生物大分子之間的相互作用。………………
詳細資料請參考:on
http://proct.bio1000.com/101969/
⑥ 蛋白質工程的研究分為幾個方面
蛋白質工程研究的內容十分廣泛,大致可分為兩方面:(1)基因水平上的蛋白質改造。這是從根本上實現的蛋白質改造,也就是第二代基因工程。它不再是單純的基因克隆和表達,而要求進一步的基因操作。基因融合得到的融合基因,可表達得到融合蛋白質,從而改變了蛋白質的結構和功能,或者改變了蛋白質合成的調節機理,從而克隆到已建立的表達系統中;定位誘變在基因水平上改變蛋白質一級結構,以調節蛋白質的高級結構和功能;DNA合成技術用於蛋白質功能片段多肽基因的合成,可創造結構和功能全新蛋白質。
(2)蛋白質修飾,即蛋白質翻譯後的基因修飾。酶固定化技術在實踐中已有廣泛的研究和應用。蛋白質分子中基因的化學修飾和生物修飾,也是目前蛋白質工程研究中的一個重要課題。這種修飾往往為了延長蛋白質的穩定性;在臨床應用中,延長蛋白質葯物的生物半衰期,改變其免疫原性,提高它們對蛋白酶的抗性。
⑦ 蛋白質工程指什麼
蛋白質工程是指通過蛋白質化學、蛋白質晶體學和動力學的研究,獲取有關蛋白質物理和化學等各方面的信息,在此基礎上利用生物技術手段對蛋白質的DNA編碼序列進行有目的的改造並分離、純化蛋白質,從而獲取自然界沒有的、具有優良性質或適用於工業生產條件的全新蛋白質的過程。
蛋白質工程的實踐依據DNA指導合成蛋白質,人們可以根據需要對負責編碼某種蛋白質的基因進行重新設計,使合成出來的蛋白質的結構變得符合人們的要求。由於蛋白質工程是在基因工程的基礎上發展起來的,在技術方面有諸多同基因工程技術相似的地方,因此蛋白質工程也被稱為「第二代基因工程」。
⑧ 什麼是蛋白質組學在技術上有何特點
一個細胞、組織、生物體基因組表達的全部蛋白質成為蛋白質組。而研究蛋白質組的學問成為蛋白質組學。這是一門龐大的學科系統!
⑨ 什麼是蛋白質工程
蛋白質工程是指在基因工程的基礎上,結合蛋白質結晶學,計算機輔助設計和蛋白質化學等多學科的基礎知識,通過對基因的人工定向改造等手段,對蛋白質進行修飾、改造和拼接,以生產出能滿足人類需要的新型蛋白質的技術。它是在深入了解蛋白質空間結構與功能,在掌握基因操作技術的基礎上,用人工合成生產具有新的結構與功能的蛋白質分子。
⑩ 蛋白質組學主要包括哪些分析技術及各自特點.
雙向凝膠電泳
雙向凝膠電泳的原理是第一向基於蛋白質的等電點不同用等電聚焦分離,第二向則按分子量的不同用SDS-PAGE分離,把復雜蛋白混合物中的蛋白質在二維平面上分開。由於雙向電泳技術在蛋白質組與醫學研究中所處的重要位置,它可用於蛋白質轉錄及轉錄後修飾研究,蛋白質組的比較和蛋白質間的相互作用,細胞分化凋亡研究,致病機制及耐葯機制的研究,療效監測,新葯開發,癌症研究,蛋白純度檢查,小量蛋白純化,新替代疫苗的研製等許多方面。近年來經過多方面改進已成為研究蛋白質組的最有使用價值的核心方法。
等電聚焦
等電聚焦(isoelectric focusing,IEF)是60年代中期問世的一種利用有pH梯度的介質分離等電點不同的蛋白質的電泳技術。等電聚焦凝膠電泳依據蛋白質分子的靜電荷或等電點進行分離,等電聚焦中,蛋白質分子在含有載體兩性電解質形成的一個連續而穩定的線性pH梯度中電泳。載體兩性電解質是脂肪族多氨基多羧酸,在電場中形成正極為酸性,負極為鹼性的連續的pH梯度。蛋白質分子在偏離其等電點的pH條件下帶有電荷,因此可以在電場中移動;當蛋白質遷移至其等電點位置時,其靜電荷數為零,在電場中不再移動,據此將蛋白質分離。
生物質譜
生物質譜技術是蛋白質組學研究中最重要的鑒定技術,其基本原理是樣品分子離子化後,根據不同離子之間的荷質比(M/E)的差異來分離並確定分子量。對於經過雙向電泳分離的目標蛋白質用胰蛋白酶酶解(水解Lys或Arg的-C端形成的肽鍵)成肽段,對這些肽段用質譜進行鑒定與分析。目前常用的質譜包括兩種:基質輔助激光解吸電離-飛行時間質譜(MALDI-TOF-MS)和電噴霧質譜(ESI- MS)。
飛行時間質譜
MALDI 的電離方式是 Karas和Hillenkamp於1988年提出。MALDI的基本原理是將分析物分散在基質分子(尼古丁酸及其同系物)中並形成晶體,當用激光(337nm的氮激光)照射晶體時,基質分子吸收激光能量,樣品解吸附,基質-樣品之間發生電荷轉移使樣品分子電離。它從固相標本中產生離子,並在飛行管中測定其分子量,MALDI-TOF-MS一般用於肽質量指紋圖譜,非常快速(每次分析只需3~5min),靈敏(達到fmol水平),可以精確測量肽段質量,但是如果在分析前不修飾肽段,MALDI-TOF-MS不能給出肽片段的序列。
電噴霧質譜(ESI-MS)
ESI- MS是利用高電場使質譜進樣端的毛細管柱流出的液滴帶電,在N2氣流的作用下,液滴溶劑蒸發,表面積縮小,表面電荷密度不斷增加,直至產生的庫侖力與液滴表面張力達到雷利極限,液滴爆裂為帶電的子液滴,這一過程不斷重復使最終的液滴非常細小呈噴霧狀,這時液滴表面的電場非常強大,使分析物離子化並以帶單電荷或多電荷的離子形式進入質量分析器。ESI-MS從液相中產生離子,一般說來,肽段的混合物經過液相色譜分離後,經過偶聯的與在線連接的離子阱質譜分析,給出肽片段的精確的氨基酸序列,但是 分析時間一般較長。 目前,許多實驗室兩種質譜方法連用,獲得有意義的蛋白質的肽段序列,設計探針或引物來獲得有意義的基因。隨著蛋白質組研究的深入,又有多種新型質譜儀出現,主要是在上述質譜儀的基礎上進行改進與重新組合