⑴ 重大建设工程和可能发生严重,次生灾害的建设工程是否进行地震安全评价,并根据地震,安全性评价结果确定
抗震设防应该按照国家标准《GB50223-2008建筑工程抗震设防分类标准》及《GB 50011—2010建筑抗震设计规范》等标准执行,如果其评价高于国家标准的指标,可以按更高的要求设防,但不能低于国家标准。
⑵ 哪些工程场地需要进行地震安全性评价
《中国地震局关于贯彻落实国务院清理规范第一批行政审批中介服务事项有关要求的通知》(中震防发〔2015〕59号)
需开展地震安全性评价确定抗震设防要求的建设工程目录(暂行)
一、核工程
核电厂;核燃料后处理厂;核供热站;核能海水淡化工程;
高放废物处置场;其他受地震破坏后可能引发放射性污染的核设
施建设工程。
二、水利水电工程
参照行业标准NB35047-2015《水电工程水工建筑物抗震设
计规范》,包括:坝高超过200m或库容大于100亿m3的大(I)
型工程,以及位于基本地震动峰值加速度分区0.10g及以上地区
内坝高超过100m的1、2级大坝。
三、房屋建筑工程
国家标准GB50223-2008《建筑工程抗震设防分类标准》规
定的特殊设防类(甲类)房屋建筑工程。
四、城市基础设施工程
国家标准GB50223-2008《建筑工程抗震设防分类标准》和
国家标准GB50909-2014《城市轨道交通结构抗震设计规范》中
规定的特殊设防类(甲类)城市基础设施工程。
— 5 —
五、油气储运工程
国家标准GB50470-2008《油气输送管线线路工程抗震设计
规范》规定的重要区段管道。
六、公路工程
参照行业标准JTG B02-2013《公路工程抗震规范》,包括:
位于基本地震动峰值加速度分区0.30g及以上地区内的单跨跨
径超过150m的特大桥。
七、铁路工程
参照国家标准GB50111-2006《铁路工程抗震设计规范》,包
括:穿越大江大河(主航道)的隧道;海底隧道;水深大于20m、
墩高大于80m、跨度大于150m的铁路桥梁。
八、化学工业建(构)筑物
参照国家标准GB50914-2013《化学工业建(构)筑物抗震
设防分类标准》,包括:涉及光气合成、精制、使用及存储的特
殊设防类(甲类)建(构)筑物和厂房。
九、水运工程
参照行业标准JTS 146-2012《水运工程抗震设计规范》,包
括:液化天然气码头和储罐区护岸。
⑶ 为什么要进行建设工程场地震安全性评价工作
这里所说的工程场地,可以是面积较大的城市、经济开发区、大型工矿企业,或者是铺设很长的输油、输气管线、和占地面很广的生命线工程,也可能是某些重大工程,如电厂、大桥、大坝、高层建筑的建设场地。未来时间根据工程的重要性、工程设计使用寿命来确定。如一般工业与民用建筑,指几十年时间,所以取未来50年超越概率为10%的地震动参数作为设防要求,对于核电厂的极限安全地震动,则取年超越概率为百分之一。而地震影响主要指场地可能遭遇的地震危险程度,它通常以地震动参数(如烈度、峰值加速度、速度、位移、反应谱等)来表示。
⑷ 地震会产生什么地质灾害,对工程建设有何影响简答题
因地震活动引起的地质灾害。主要包括:崩塌、滑坡、泥石流、地裂缝、地面塌陷、砂土液化等。地震地质灾害是主要的地震次生灾害,它们不仅常造成严重的人员伤亡,,而且破坏房屋、道路、桥梁等工程设施和土地资源,从而加剧地震灾害损失程度。
⑸ 建设铁路是诱发地震的原因吗
震球表层震包括震、诱发震脉三类震指自发震;诱发震指爆破、核试验等类工程引起震;脉则指由于气、海浪等素引起球表面经性微
震球构造运种表现形式称质现象强烈震发通伴随规模震断层或其表破坏现象现同岩层所积累应变能弹性波(震波)形式向外传播造面剧烈振引起建筑物倒塌畜伤亡震按其构造震、火山震塌陷震三类构造震主要指由于质构造力作用造岩层断裂或错引起震类震数约占全球震90%;其破坏力强几乎所强烈震均属构造震火山震伴随着火山喷发或由于岩浆冲引起震占全球震总数7%左右塌陷震指由于层陷落或山崩引起震约占全球震总数3%
⑹ 为什么修人工湖泊会诱发地震说的简明扼要点。谢谢
人类大规模的工程建设活动会引发地震。水库诱发地震是人工湖在蓄水初期出现的、与当地天然地震活动特征明显不同的地震现象,亦简称为水库地震。水库诱发地震具有多种成因,其发震机理和诱震因素十分复杂,目前还没有完全为人们所认识。水库诱发地震是涉及地震学、水文地质学、工程地质学、和结构抗震学等多学科交叉的前沿课题。
本世纪40年代以来,世界上已有34个国家的134座水库被报道出现了水库诱发地震,其中得到较普遍承认的超过90处。有4例发生了6级以上地震,他们是中国的新丰江(1962年,6.1级)、赞比亚—津巴布韦的卡里巴(Kariba,1963年,6.1级)、希腊的克瑞马斯塔(Kremasta,1966年,6.3级)、和印度的柯依纳(Koyna,1967年,6.5级)。
发生在坝址附近的强震和中强震,有可能对大坝和其它水工建筑物造成直接损害。已知挡水建筑物遭受损害的有两个震例(表1),尚未发生过大坝因水库地震而溃垮或严重破坏的情况。水库诱发地震对库区及邻近地区居民点的影响则更为常见,强震和中强震会给库区造成人员伤亡,带来重大物质损失。即使一般的弱震微震,也会对震中区造成一定危害,影响当地居民的正常生产和生活,是库区主要的环境地质问题之一。
我国迄今已报道出现水库诱发地震的工程有25例,其中得到公认的有17例(见表2),是世界上水库地震最多的国家之一。值得注意的是,高坝大库中出现诱发地震的比例明显偏高。我国(含香港和台湾)已建成的百米以上大坝32座,出现了水库诱发地震的有10座,发震比例超过31%;其中1979年以后蓄水的17座百米以上大坝中有8座发生水库地震,发震比例高达47%,远远高于世界平均水平。
从水库诱发地震的强度来看,全球发生6.0级以上强烈地震的仅占3%,5.9—4.5级中等强度的占27%,发生4.4—3.0级弱震和3.0级以下微震的占到70%(分别为32%和38%)。在我国这一比例相应为4%、16%和80%。但是水库诱发地震往往出现在历史地震较平静的地区,强烈和中强水库地震在大多数情况下都超过了当地历史记载的最大地震,许多发生弱震和有感微震的情况,也是当地居民记忆中未曾有过的重大事件。
自70年代末开始,我国的水库诱发地震研究由回顾性研究逐渐转变为前瞻性研究。近20年来,几乎全部拟建的大(1)型和多数大(2)型水利水电工程,对诱发地震的潜在危险性及其对工程和环境的影响作出前期论证,数十个重大工程在蓄水前提出过正式预测意见。我国水库诱发地震研究的突出特点,是始终紧密结合工程建设和工程抗震安全的需要,具有很强的实用性和可操作性。对成因机制、判别标志、评价和预测准则等问题,进行了多方面的探索,逐渐形成一整套具有特色的研究和评价方法,特别在研究和确定工程的抗震对策方面,积累了丰富的经验。
按照多成因理论,常见的水库诱发地震主要有三种类型:构造破裂型、岩溶塌陷型和地壳表层卸荷型。构造型水库地震有可能达到中等(4.5级)以上强度,破坏性水库地震绝大部分属于构造型水库地震。岩溶塌陷型水库地震只出现在碳酸盐岩分布的库段,与岩溶洞穴和地下管道系统的发育有关,震级一般小于4级。地壳表层卸荷型水库地震具有一定的随机性,在断裂发育、坚硬脆性的岩体中,具备一定的卸荷应力和水动力条件时即可发生,但其震级一般在3级以下。实用的水库诱发地震预测模型至少必须能辨别出上述三种主要类型的诱震环境,并分别进行预测。对于不常见的水库地震类型,最好也具有一定的识别能力。
对水库地震成因的探讨一直是人们最感兴趣的课题,也曾有许多似是而非的观点流行。库水的重力荷载作用和孔隙压力作用是诱震因素之一,但库水的作用必须借助于地质体中存在的导水结构面才能向深部传递。通过查明库区是否存在特定的水文地质条件来判别诱发地震的可能性,进而估计发震地点和最大可能强度,称为水库诱发地震研究中的水文地质结构面理论,是现阶段预测水库诱发地震的理论基础。
地震监测是大型水利水电工程的常规监测项目之一。在前期勘测阶段或开始施工阶段就应进行地震监测台网建设,积累地震本底资料,以便对比水库蓄水前后地震活动的变化情况。据不完全统计,设立了地震台站的大型水库工程已经超过40座,设立了比较先进的遥测地震台网的目前已有11个。在确保大坝抗震安全,保证工程顺利施工和运行方面发挥了重要作用。
我们认为,下一步应采取理论与实践相结合的方法,深入探讨水库地震的成因机制、判别标志和预测评价方法等问题。将GIS(地理信息系统)技术引入水库诱发地震的研究中,建立集分析预测评价、安全监测预警和防震抗灾决策支持为一体的综合系统
⑺ 地震与工程建设的相互关系
地震(earthquake)是大地的振动。它发源于地下某一点,该点称为震源(focus)。振动从震源传出,在地球中传播。地面上离震源最近的一点称为震中,它是接受振动最早的部位。大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。地震是极其频繁的,全球每年发生地震约500万次。
球的结构就象鸡蛋,可分为三层。中心层是“蛋黄”-地核;中间是“蛋清”-地幔;外层是“蛋壳”-地壳。地震一般发生在地壳之中。地球在不停地自转和公转,同时地壳内部也在不停地变化。由此而产生力的作用,使地壳岩层变形、断裂、错动,于是便发生地震。地下发生地震的地方叫震源。从震源垂直向上到地表的地方叫震中。从震中到震源的距离叫震源深度。震源浓度小于70公里的地震为浅源地震,在70-300公里之间的地震为中源地震,超过300公里的地震为深源地震。震源深度最深的地震是1963年发生印度尼西亚伊里安查亚省北部海域的5.8级地震,震源深度786公里。对于同样大小的地震,由于震源深度不一样,也不一样,对地面造成的破坏程度也不一样。震源越浅,破坏越大,但波及范围也越小,反之亦然。
某地与震中的距离叫震中距。震中距小于100公里的地震称为地方震,在100-1000公里之间的地震称为近震,大于1000公里的地震称为远震,其中,震中距越远的地方受到的影响和破坏越小。
地震所引起的地面振动是一种复杂的运动,它是由纵波和横波共同作用的结果。在震中区,纵波使地面上下颠动。横波使地面水平晃动。由于纵波传播速度较快,衰减也较快,横波传播速度较慢,衰减也较慢,因此离震中较远的地方,往往感觉不到上下跳动,但能感到达水平晃动。
地震本身的大小,用震级表示,根据地震时释放的弹性波能量大小来确定震级,我国一般采用里氏震级。通常把小于2.5级的地震叫小地震,2.5-4.7级地震叫有感地震,大于4.7级地震称为破坏性地震。震级每相差1级,地震释放的能量相差约30倍。比如说,一个7级地震相当于30个6级地震,或相当于900个5级地震,震级相差0.1级,释放的能量平均相差1.4倍。
当某地发生一个较大的地震时,在一段时间内,往往会发生一系列的地震,其中最大的一个地震叫做主震,主震之前发生的地震叫前震,主震之后发生的地震叫余震。
地震时一定点地面震动强弱的程度叫地震烈度。我国将地震烈度分为12度。
震级与烈度,两者虽然都可反映地震的强弱,但含义并有一样。同一个地震,震级只有一个,但烈度却因地而异,不同的地方,烈度值不一样。例如,1990年2月10日,常熟-太仓发生了5.1级地震,有人说在苏州是4级,在无锡是3级,这是错的。无论在何处,只能说常熟-太仓发生了5.1级地震,但这次地震,在太仓的沙溪镇地震烈度是6度,在苏州地震烈度是4度,在无锡地震烈度是3度。
地震烈度是经常使用的一个名词。划分烈度有定性和定量标准。在中国地震烈度表上(见下表),对人的感觉、一般房屋震害程度和其他现象作了描述,可以作为确定烈度的基本依据。
⑻ 工程建设场地地震安全性评价内容与步骤是什么
工程场地地震安全性评价工作跨越了地震学、地震地质学和地震工程学等学科,以地震的源、传播路径、场地条件三方面的地震环境为基础,从工程角度去研究地震的发生和发展规律及地震发生以后的传播、衰减规律和场地地震效应,确定建设工程所需的地震动参数,具体评价内容可归为以下几个方面:
区域地震活动性和地震构造综合分析;近场和场区地震活动性和地震构造综合评价;场地工程地震条件研究;建立地震烈度与地震动衰减关系;地震危险性确定性分析;地震危险性概率分析;区域性地震区划工作;场地地震动参数确定和地震地质灾害评价;地震小区划。大致的工作步骤为:
1)首先根据地震地质构造资料、地球物理资料和地震资料,估计工作区内的未来地震活动性。
2)再根据地震烈度和地震强震记录资料得到本区的地震烈度和地震动参数衰减关系,估计场地的地震基本烈度和基岩地震动参数。
3)最后再根据场地的工程地质条件,估计场地条件对地震动的影响,估计场地土层地表、不同深度的地震动参数和地震地质灾害。对于一个地区,则应再根据此地区多个场点的结果,给出设计地震动参数的等值线图和地震地质灾害小区划图,合称为地震小区划图;对于跨越活断层的工程,还要估计此断层可能产生的位错。
⑼ 人类工程活动所引起的非自然性地震
由于人类工程活动所触发的地震,如矿山开采,采空坍陷,深井注水,水库蓄水等所诱发的地震,矿山采空坍陷与可溶岩的陷落所形成的微弱地震一致,故不再重复。
7.1.3.1 深孔注水地震
美国科罗拉多州的丹佛洛山矶军工厂使用深井处理废水,在井孔周围地区发生了一系列地震,从1962~1967年,发生三次震级为5~5.5级的地震。研究结果表明,是深井注水诱发的地震。科罗拉多州的兰吉利油田,采用向井内高压注水,进行第二次开采石油,引起微弱地震,1967年秋,美国地质调查所在油田设置了地震台网,开始对震中位置进行精确测定。在进行物理模型计算和现场实验基础上,作了控制地震试验,提出了最后结论,如果能在那里控制断层内的流体压力,也就能控制那里的地震。
1972年1月9日开始,武昌洪山区发生1.3级地震,2月8日至12日,连续发生了三次2级左右有感地震,此为发生在市区的浅震,影响较大,故进行了专门性调查研究,调查中了解到震中有感范围内,有一正在施工的深孔钻井,在全孔施工过程中,出现了130个地震小震群,形成两个密集时段。其余时间则比较零星分散。两个密集段的时间,正好与钻孔通过两个含水破碎带相吻合,由于遇破碎带钻孔循环水变小与突然无返水,为保证钻进,第一次漏水后,泵压增至2.04~2.55MPa,注入回水浆液达14600m3之多,泵压继续增至5.1MPa,注入浆液达38400m3之多时,地震进入第一密集时段序列,形成三次2级以上有感地震。通过第二含水破碎带,出现了地震第二密集时段,但因泵压降至1.02MPa后增至2.05MPa,注入浆液量在单位时间内也减小,故第二次地震密切时段序列的地震能量,较第一次小3.7倍,此孔于1972年5月27日提前关闭撤离,钻孔周围区域微小地震亦停止。终孔时全孔累计注入浆液近70000m3。这是高压向井孔注水注液引发地震的又一实例,井孔施工结束至今已36年,未再发生密集型微震序列。
7.1.3.2 水库诱发地震
深的井孔注水而诱发地震,说明其与一定的构造条件与岩性结构特性外,和水与水柱压力有密切关联,因而水库蓄水可能诱发地震,就成为广为人们所接受的共识,对其形成机理,除必须的地质背景条件外,还有与水有关系的下列几种论说:叠加的垂直荷载效应论;因渗水影响岩石物理力学特性的水理效应论;孔隙水压效应论;气爆说;渗水造成库边断裂带两侧水柱压差所形成剪切滑动说;以及鲜为人们注意的热弹性应力说。水库诱发地震的成因比较复杂,形成条件有差异,现象反映不同,不是某一单一因素影响。20世纪60年代以来,由于世界上已有百余座水库诱发了地震,其中有四座发生了6级以上的强震,给工程造成不同程度的损害。我国新丰江水电站,也因1962年3月产生6.1级地震使坝体产生裂缝,而受到高度关注。地震、水电、高校等科研单位进行了卓有成效的科研以探求其形成机理。1976年联合国教科文组织与大坝水库有关的地质现象工作组,通过8~41、8~42决议,要求坝高大于100m,库容大于1×109m3的水电工程,其建成前的前期工作,须分阶段进行区域地质和新构造调查,进行历史地震分析,布置地震台网进行微震观测和其他长期观测,在工程投入运行前,必须有两年的观测资料。这些建议已成为一些国家的标准做法。我国水电工程在建设中的具体做法:前期工作采用地震地质法,即从宏观构造展布,所属构造体系与历史演绎,现构造主应方向与结构面属性,岩性、水文地质条件,水库因素情况,结合地震调查,活断层特性鉴别等进行类比,依据历史地震配合短期地震监测资料进行危险震级的评估。地球物理方法,是水电工程建成运营后出现水库诱发地震现象,进行补救性研究的一种措施。水库地震与水柱压力,活性断裂构造和硬脆岩性有关,但发现一些水库震例并无此必然条件,现列2008年前我国已知16例水库地震简况如表7.1:
表7.1 中国水库地震震例表
续表
7.1.3.2.1 这些水库地震所表现的特点:
(1)水库地震与岩性的关系密切。出现在喀斯特发育区与灰岩密切相关的计14个;出现在岩浆岩的断裂分布区,与花岗岩和火山岩有关的各1个;
(2)水库地震与水库蓄水水位之间有着明显的相关关系。水库蓄水不久就开始出现微震活动的8个;水库蓄到较高水位出现地震的4个;原有弱震、水库蓄水后地震频度加密的2个;降低库水位而诱发地震的2个;
(3)水库地震与库容大小的关系不显。库容大于100×108m3的2个;大于10×108m3的6个;大于1×108m3的3个;大于0.1×108m3的4个;小于0.1×108m3的1个,以小于10×108m3库容诱发地震的较多;
(4)水库地震与坝高的关系,有明显的相关趋势。坝高大于150m的3个。100~150m的2个,60~100m的4个。即坝高大于60m的9个。15~60m的5个。小于15m的2个。即坝高大于15m的14个,仅约为已建成坝高大于15m总数的0.1%。其中坝高大于100m的5座,占已建成蓄水坝高大于100m的29座水库的17%;
(5)这16个诱震水库的原地震区划,位于无震区的7个,弱震区的7个,强震区的1个,未判明的1个。水库蓄水所诱发的震级,强震1个,弱震8个,微震7个。微震型约近45%。坝高库容与震级的关系。除新丰江高坝大库诱发强震型地震外,其他水库的震级,与坝高库容无明显的相关性;
(6)在构造环境上,位于中新生代断陷盆地边缘的10个。其余与库区及其边缘有活动性断层通过有关。部分水库周边有温泉。绝大部分水库地震的震中,分布在库尾或库边周围。仅新丰江的强震震中距大坝1.1km。震源深度一般为3~5km。
7.1.3.2.2 这些水库地震的规律,从我国已产生水库地震的震例情况看,水库诱震是在岩性构造等特定地质背景条件下发生的,具有如下的规律性。
(1)水库中分布有透水性较好的岩层,或连通性很好的透水裂隙,易造成水向深处的渗漏。这种渗漏是处于封闭环境,无向下游和向邻谷的渗漏,只能向深部渗透;
(2)诱震所在位置的岩石,为近似均质的刚性岩体。主要为灰岩,其次为岩浆岩;
(3)位于构造上具一定活动特性的部位,如中新生代断陷盆地的边缘,不少震例处有温泉,或新的断裂活动较为明显。这些均表明,一些地区虽非新构造运动和地震强烈活动区,仍处于一定构造应力作用条件下;
(4)水库地震依附于原断裂构造所分布的部位。而且大多数出现在库边地带。这是由于断层两侧形成明显孔隙水压差,造成较大的应力差异;原断裂发生时使积聚应力释放,断层附近可能形成与之相抗衡的高应力区,前苏联戈尔诺给里亚地区的矿井距断层5~10m范围内,应力比其他部位高出2~3倍;水库渗水形成水理和孔隙水压效应引起主应力的相对增加。三者部分或全部叠加,易形成超过阻抗岩体强度的高应力而产生突发性破裂形成地震;
(5)震源的断裂带具有阻抗应变的特性。表现为断层交会带、切割错动点、断层拐点或断裂尖灭端等处,具阻抗变形的特性。
7.1.3.2.3 水库地震的必须条件但非必然。
从丰富的论文信息中,探求水库诱发地震诸多因素中的必须条件,但却非必然的发展,这要求在水库地震形成机理研究中,在非常活跃的思路上,要坚持唯物辩证观,在继续作理论上扩展时开拓新思维。现按一些论文中论述较多的六个方面的相关因素进行讨论。
(1)坝高与库容。众多学者对大坝与水库的技术指标、地质背景条件与水库诱发地震的相关关系,作了统计分析,得出坝高与库容,是诱发水库地震的最明显因素,现全世界已有200000多座水库,诱发地震的100座左右,仅为0.05%,我国80000座水库,诱发地震的已知16座,仅为0.02%,其概率是较低的。但坝高大于100m诱发地震的概率为17%。新丰江发生6.1级具破坏性强震,所以高坝大库的诱发地震,引起人们的重视,强调在工程前期进行周详的水库地质调查。但坝高大于50m,库容5×108m3左右,水库诱震震级4级以上的有2座,而宜都邓家桥水库,坝高仅12m,库容只有0.0035×108m3,威宁草海坝高2m,库容0.9×108m3,均发生3级左右诱发地震,说明库容与坝高不是诱发地震的必然发展结果;
(2)地质构造。众多学者强调水库诱发地震与活断层的关系,特别是通过水库,又有渗漏特性的活断层,是诱发水库地震的必要条件,但有不少实例说明,坝与水库建在活动性大断层上,却未诱发地震。如鸭绿江上的水丰和云峰两个大型梯级水电站,其水头90多米,库容100×108m3多,位于具继承性活动的鸭绿江地堑断裂带上,其断层泥宽达70多米,破碎带宽80~100m,但蓄水后无水库地震发生。又如广西澄碧河水库,位于有名的右江活动性深大断层带上,在断陷盆地的边缘,虽长300km多的右江断裂带上频繁出现地震活动,但三十多年来澄碧河水库及其附近却异常平静。广西灵山水库,建在300km多长的南丹-马山-灵山的大断裂带南端,1936年灵山产生6.75级的强震,1958年产生5.7级地震,在南丹九圩发生烈度为Ⅴ度的放大区,但灵山水库建成后也没有发生诱发地震。已诱发地震的水库,如乌江渡和湖南镇,其诱震区域无大断裂展布,也无活动性断裂,主要沿库边的小断层、裂隙、节理与溶洞发生。而横切河谷的大断层未产生诱发地震。在俄、美也有类似情况;
(3)地震活动性。一般认为区域地震活动性高的地区,诱发地震的可能性就大。还认为诱发地震的最高震级,不可能超过本地区构造地震的最高震级。但最高地震震级是依据全国地震烈度区划图确定的,而地震烈度区划图,是把图中划定区域的历史最高震级作为一个地区构造地震的最高震级。从地球演进观点考虑,有些地区显然是不适当。如新丰江水库地震,建坝前给定的基本烈度为Ⅵ度,水库蓄水后诱发了Ⅷ度地震,突破了给定的基本烈度值。1976年唐山发生7.8级地震,大大突破了历史上的最高震级。2008年5月12日的汶川8级大地震,亦超过历史上的最高震级,因此研究水库诱发地震时,以该区历史地震的最高震级作为水库诱发地震的最高震级,没有什么实际意义。地震烈度高的地区,地震活动性也相应较高。但地震活动性高的地区也不一定就易于诱发地震。在印度和巴基斯坦等国,沿喜马拉雅山建了十多座坝高超过100m,库容大于10×108m3的大水库,这些水库都处在高地震活动区,每座水库附近都曾发生过7级以上的构造性地震,但蓄水后却没有一座诱发地震。相反,在低地震活动性地区有的水库却诱发地震。可见区域地震活动性与诱发地震之间无必然性联系;
(4)岩性条件。表7.1所列我国已知水库诱发地震16例中,发生在可溶岩中的14例,与酸性岩浆岩有关的2例,岩性特点是硬脆均一。有成岩缺陷的砾岩、砂岩、泥岩、页岩等,以及由它们变质所形成的变质岩,似不易诱发地震。云贵高原,是可溶岩分布最广的地区,在可溶岩区所建众多水库,除乌江渡水库外,其余众多水库并未诱发地震,所以不是所有可溶岩地区修建水库必然会诱发或大或小的地震;
(5)渗漏条件。山区水库,大多基岩裸露,特别可溶岩与岩浆岩地区,库水可直接通过基岩中的水力通道渗漏,并能保持一定的水压力,因而有利于诱发地震;
(6)应力状态。是研究应力时、空、态特征,应力值大小。已发震水库的一些资料表明,其最大水平主应力值为10MPa、20MPa、30MPa,最小水平主应力为数至10MPa多,这样的应力水平许多地区都可达到,所以有人认为,发震与应力值的高低无关。更多人注意到应力主轴空间方位的分布;最大主应力σ1是垂直的,中间主应力σ2与最小主应力σ3是水平的,认为是发生正断层的倾滑应力环境,这种状态下的水库水体荷载有利于诱发地震,已有水库诱震震原机制解属于这一类型。如σ2是垂直方向,σ1、σ3是水平方向,认为是发生走滑性平推断层的应力环境,有相当数量的水库诱发地震震源机制解属于这一类型。如σ3是垂直方向,σ1、σ2是水平方向,认为是上冲性的逆断层环境,一些水库的详细观测表明,逆断层机制的诱发地震占有相当数量。有些人认为,逆断层应力环境下,水体荷载增大了断层面上的正应力,起到稳定断层的作用,从而抑制了地震活动。并举出巴基斯坦的塔贝拉和我国台湾的曾文水库等例子,在水库蓄水后,地震活动反而减低。因此认为逆断层环境不利于诱发地震。逆断层应力环境下的水库诱震与应力变化后低序次应力状态有关。因此很难断定一定不可能诱发地震。
7.1.3.2.4 水库地震成因
水库诱发地震的理论与成因思路比较活跃。
(1)水库蓄水诱发了积累在地壳中的初始应力释放,初始应力包括构造应力与自重应力,构造应力中含原地形受剥蚀刻切后,形成水平应力残存增高的富集现象,成了岩体中被称为构造残余应力的应力值;
(2)水库水体所起的补充应力作用;
(3)地下水位以下,岩体成为固液相的两相物质,岩石的孔隙水压增加;
(4)岩体中束缚水压缩气体,发生气爆,如盲断层裂隙中的情况;
(5)大的洞穴坍陷,涵洞室中被封闭气体压缩爆炸;
(6)沿断层裂隙产生液压应力变化;
(7)地下水沿小断层或裂隙渗漏,使岩体产生物理或化学作用,如软化、润滑、膨胀、收缩等,产生各种变形;
(8)地下水压在硅酸盐岩类岩石裂隙端部产生腐蚀作用;
(9)岩石产生固结与压密或扩容调整,在达到新的平衡过程中产生爆裂,形成地震;
(10)库区地壳形变引起附加应力;
(11)水在地壳中引起温差应力。
所有上述思路,建立在高的地应力,在水体的附加应力作用下,引起岩体破裂使储蓄能释放而诱发的地震,水体的作用含有在天然应力场条件下,叠加的附加应力,对岩体产生理化效应所引起的岩体力学性变化与受力状态的调整等,均从三维正应力应变规律研究,可喜的是也有注意到岩体收缩与热弹性温差应力是诱发地震应力的思路,可惜对这一反应力应变域情况只打了擦边球,未有深入发展性研究。