导航:首页 > 项目工程 > 射频调试工程师

射频调试工程师

发布时间:2021-08-14 05:29:47

『壹』 做射频工程师已八年后的感想

我做了9年,挺喜欢射频的,越做越发现射频能做很多东西,比做普通的电子工程师好点,做工程师确实能做到头,那只有自己创业才行了,积累了那么久经验也是可以自己做了

『贰』 富士康RF射频测试工程师/技术员主要做什么工作

关注生产良率,产线维护,处理产线异常。

『叁』 射频工程师和嵌入式硬件工程师,那个好

你说没挑战性,要么就是你还没入门,要么就是你是真的大牛
嵌入式硬件不用我多说你肯定知道是干什么的,硬件电路,ARM FPGA等等等,逻辑代码等等等
这都是很有技术含量的工作,特别是不同的行业,要求都不一样,没有几个人敢说没挑战性的
至于射频工程师,需要熟悉整个射频研究的项目流程,可以独立设计调试整个射频;掌握各种数字电路和模拟电路知识,熟悉移动通信的基本原理和相关知识;能够熟练使用射频电路仿真工具、测试仪器等相关器件,总的来说就是往高频走的模拟电路就对了。
一般的公司,培养一个真正的嵌入式硬件工程师,2-3年差不多
但是要想在射频行业做点事情,没有5-8年的功底,谈都不要谈
至于赚钱,这个还真不好说,应该说差不多,不会有很大的差异的
当然,如果跨行业不一样比较,那又另当别论了

『肆』 射频工程师和电子工程师

我也是电子信息工程应届毕业生 大学也弄了不少东西 我现在就在一家对讲机研发公司上班 弄的就是射频 感觉很差 说真的 从网上看了一些东西后 觉得 虽然无线通信是个永不会淘汰的 但是搞射频有很多不好的地方 就说我弄的对讲机吧 功率比较大 调试的时候对人体的伤害也很多 你应该知道微波射频很容易被生物体吸收 再说射频入门以及以后的提高都很难的 对数学要求很高的 我后悔当初没选择去比亚迪搞ARM的嵌入式开发 那是我的强项 只是当初想多学点硬件方面的东西才选择在小公司的 真的 小公司的就是小的眼光 在大公司学东西不方便点 但是一些处理事情的方式 比方管理上的 我猜想还是很大的区别 可以学习的东西是很多 幸好我原本打算在深圳待1年 一年后想去北京

『伍』 基带和射频两个词的真正含义是什么 基带工程师和射频工程师有什么区别分别干什么工作哪种好一点

1. 含义:
基带:Baseband 信源(信息源,也称发终端)发出的没有经过调制(进行频谱搬移和变换)的原始电信号所固有的频带(频率带宽),称为基本频带,简称基带。
射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300KHz~30GHz之间。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
2. 区别:
基带工程师,是做主芯片的外围基本功能接口电路方面的调试,电路设计,数字方面的较多。也叫AP
射频工程师,是负责射频模块调试的,也叫CP。
3. 工作:
以手机开发为例
基带工程师:属于“杂食性动物” 什么都要管。基带工程师需要画原理图、指导PCB设计、做BOM、贴片跟线、单板调试、组装跟线、贴片维修、组装维修、客退机分析等等,有时还包括音频调试、配合射频调试等等。可以说,除了性能测试、整机调试,剩下都有基带工程师的份。
射频工程师:
射频工程师:是从事终端产品硬件射频部分设计开发,并对产品的实现过程进行跟踪确认的专业人员。工作内容为负责射频相关设计方案的可行性分析和实施; 制定和建立开发流程,完成相应产品相关文挡(如原理图、PCB板和BOM表和测试分析报告等)的拟制及评审; 射频器件的新供应商、新元器件的评估。
4. 比较
射频工程师比较有前途。

『陆』 rf工程师是什么

就是射频工程师 下面是收集的,有时间就看看,希望有点帮助啦!! SI---Signal Integrity 信号完整性 PI---Power Integrity 电源完整性 emc---electromagnetic compatibility 电磁兼容 rf --radio frequency 射频 emc=emi+ems EMI(电磁辐射)=传导干扰(conction)+辐射干扰(emission) SI: 由傅立叶 变换可看出,信号上升越快, 高次谐波的幅度越大, MAXWELL方程组看知,这些交流高次谐波会在临近的线上产生交变电流. 甚至通过空间寄生电容直接辐射到另外的导体,所以这些高次谐波就是造成辐射干扰(emission)的主要因素; (说的简单点,就是信号上升越快,信号越完整,信号品质越好,但是对于emi不好) PI: PCB上存在数字\\模拟区域, 高频\\低频区域等不同的区域和平面, 如果分割不当则很容易相互干扰, 即传导干扰(conction). 电源完整性之APSIM-SPI 篇 在PCB设计中,高速电路的布局布线和质量分析无疑是工程师们讨论的焦点。尤其是如今的电路工作频率越来越高,例如一般的数字信号处理(DSP)电路板应用频率在150-200MHz是很常见的,CPU板在实际应用中达到500MHz以上已经不足为奇,在通信行业中Ghz电路的设计已经十分普及。所有这些PCB板的设计,往往是采用多层板技术来实现。在多层板设计中不可避免地为采用电源层的设计技术。而在电源层设计中,往往由于多种类的电源混合应用而使得设计变为十分复杂。 那么萦绕在PCB工程师中的难题有哪些?PCB的层数如何定义?包括采用多少层?各个层的内容如何安排最合理?如应该有几层地,信号层和地层如何交替排列等等。如何设计多种类的电源分块系统?如3.3V, 2.5V, 5V, 12V 等等。电源层的合理分割和共地问题是PCB是否稳定的一个十分重要的因素。如何设计去耦电容?利用去耦电容来消除开关噪声是常用的手段,但如何确定其电容量?电容放置在什么位置?什么时候采用什么类型的电容等等。如何消除地弹噪声?地弹噪声是如何影响和干扰有用信号的?回路(Return Path)噪声如何消除?很多情况下,回路设计不合理是电路不工作的关键,而回路设计往往是工程师最觉得束手无策的工作。如何合理设计电流的分配?尤其是地电层中电流的分配设计十分困难,而总电流在PCB板中的分配如果不均匀,会直接明显地影响PCB板的不稳定工作。另外还有一些常见的如上冲,下冲,振铃(振荡),时延,阻抗匹配,毛刺等等有关信号的奇变问题,但这些问题和上述问题是不可分割的。它们之间是因果关系。 总的来说,设计好一个高质量的高速PCB板,应该从信号完整性(SI---Signal Integrity)和电源完整性(PI---Power Integrity )两个方面来考虑。尽管比较直接的结果是从信号完整性上表现出来的,但究其成因,我们绝不能忽略了电源完整性的设计。因为电源完整性直接影响最终PCB板的信号完整性。 有一个十分大的误区存在于PCB工程师中间,尤其是那些曾经使用传统EDA工具来进行高速PCB设计的工程师。有很多工程师曾经问过我们:“为什么用EDA具的SI信号完整性工具分析出来的结果和我们用仪器实际测试的结果不一致,而且往往是分析的结果比较理想?”其实这个问题很简单。引起这个问题的原因是:一方面是EDA厂商的技术人员没有解释清楚;另一方面是PCB设计人员的对仿真结果的理解问题。我们知道,目前中国市场上使用比较多的EDA工具主要是SI(信号完整性)分析工具,SI 是在不考虑电源的影响下基于布线和器件模型而进行的分析,而且大多数连模拟器件也不考虑(假定是理想的),可想而知,这样的分析结果和实际结果肯定是有误差的。因为大多数情况下, PCB板中电源完整性的影响比SI更加严重。 目前,虽然有些EDA厂商也已经部分的提供PI(电源完整性)的分析功能,但由于它们的分析功能和SI(信号完整性)完全分开进行,用户依然没有办法看到和实际测试结果接近的分析报告。PI 和 SI 是密切关联的。而且很多情况下,影响信号奇变的主要原因是电源系统。 例如,去耦电容没有设计好,地层设计不合理,回路影响很严重,电流分配不均匀,地弹噪声太大等等。 作为PCB设计工程师,其实很希望看到接近于实际结果的分析报告,那样就便于校正和排除故障,做到真正意义上的仿真设计的效果。SPI 工具的出现使得上述的讨论变为可能。SPI的英文缩写是Signal-Power Integrity, 顾名思义, 它是将SI 信号完整性和PI 电源完整性集成于一体的分析工具。使得 SI 和PI 从此不再孤立进行。 APSIM-SPI 是行业中第一家, 也是唯一一家将信号完整性和电源完整性结合于一起的产品。有了SPI工具,PCB工程师可以从此比较真实的从仿真波形中观察到和用仪器实际测试十分接近的波形。也就是说,从此理论设计和实际测试就有可比性了。 以往的SI功能是在假设电源层等是理想状态下的孤立的分析。虽然有很大的辅助作用,但没有整体效果,用户也很难简单地根据SI分析结果来排除错误。作一个假设,如果一块PCB板,由于它的VCC和GROUND线布得很细,此时电路自然不工作。用示波器等仪表也很容易发现信号发生奇变很严重。但这种很容易想象的设计,如果用一般的SI分析工具,就无法仿真出信号的奇变情况。这时的情况是,尽管仿真结果的波形很完整,没有奇变,但实际是已经奇变到了不工作的地步。所以有工程师曾经质问:“为什么当我们将PCB板中电源线和地线布得无论多么多么窄, SI仿真中的信号波形都没有变化?”, 原因就是SI仿真中没有考虑你的PI, 也就是说没有考虑你的电源线和地线。而要解决这个问题, 唯一的办法就是采用SPI工具。SPI 在进行SI信号完整性分析是充分考虑地电层,包括信号层中的地电线,以及大面积地信号填充等。而这些地电层的不稳定信号或干扰将完全的叠加到SI的仿真结果中去。这样才能仿真真正的实际工作效果,当然其最终结果也就接近了实际测试结果。便于工程师直观考虑和校正。 APSIM-SPI 为了实现SI 和PI 的有机结合,无论从内部模型、计算方法、用户界面、分析功能以及仿真机理等都作了重大调整。目的是使用户使用依然方便的前提下保证SPI功能的完美性。比如在RLGC建模和分布参数提取时,SPI 的RLGC参数提取就要比以前单纯的SI 参数提取要复杂的多。因为在SPI 中要必须充分的考虑地电层的寄生参数,以及地电层和信号线之间的连接关系。 APSIM-SPI 在进行信号奇变分析时将充分考虑地电层的影响。因为SPI 在建模时将地电层的寄生参数模型和信号布线的参数模型,以及器件IBIS或SPICE模型一起综合考虑。因此无论你设计中的去耦电容、滤波电容、端子电阻等模拟部件还是电路在工作产生的SSO开关噪声、地弹噪声等等都将一起反应在最终的仿真结果波形上。 利用APSIM公司的SPI工具,PCB工程师在设计PCB板时就可以直观地观察信号的奇变情况,并进行及时的调整。如当发现自己的地线布得不够宽时,信号会有噪声,甚至变形,这时你就可以调整地线宽度,直到满意为至。而以往地线终究应该布多宽?工程师们只有凭经验去调试,没有任何工具可以辅助它们进行设计指导。而如果地线布得不好,则引起PCB板不工作的概率将十分大。但如今的PCB板如此之复杂,不仅仅是地线宽度的问题,还应该包括地平面填充、多层地平面设计、尤其是地平面的分割技术处理等等, 对不同的频率要用不同的处理方法。 如果光凭有限的经验肯定是不能满足设计要求的。现在借助于APSIM-SPI, PCB工程师就可以很方便地知道他的地平面、地线系统设计是否合理及有效。 再如:当在地线层上有多个电源时,如3.3V的地,、2.5V的地、5V的地等,如何进行分割处理?以往工程师只能凭有限的经验,而且也只能从边界划分去简单考虑合理性。如果这方面设计不合理,其后果是可想而知的,相信工程师们是有很深的体会的。但由于地层往往在PCB 板的中间层,因为物理上根本接触不到,调试是就很难进行修改。而事实上,在进行多电源地层设计时,不光要考虑各个地域之间的边界问题,还要考虑滤波问题、共地问题等等。有了SPI工具,工程师就可以很方便的进行多电源地域分割的合理设计了。如果不合理, 那么仿真时信号就会变形,这在以前是根本做不到的。 在处理地弹噪声和SSO开关噪声时,大家知道这方面噪声的严重性(在EDA中,这方面的噪声归纳于PI电源完整性分析范围), 尤其是高速PCB, 经常遇到工作状态不稳定, 其实很可能是由于开关噪声或者是地弹噪声所引起的。工程师们也一定知道一些简单的处理办法。但从定量的角度考虑时,就很复杂了。例如:一种简单的消除SSO开关噪声的有效方法是在电源和地之间加滤波电容, 常用的方法是加一些不同质量和类型的电解电容,工程师一定很容易定量确定这些电容的最大电压,(只要根据PCB 板的工作电压就可以进行计算 ),但如何定量确定这些电容的容量,(电容值)往往是只有凭经验了,或者是参考其它电路的设计。因为要*理论去计算将是十分困难的。 尤其是现在的PCB 板电路如此复杂就更加不容易*手工计算了。电容的放置位置也是不容易确定的因素之一。但这些电解电容的放置位置和它所起的滤波效果将密切相关。(常见的方法是放置在PCB板的电源入口处)。 现在利用APSIM-SPI工具,工程师就可以很方便地来设计和验证这些滤波电容的效果了。并且有效的确定这些电容的放置位置和它们的电容值。多余的电容坚决不要,应该有的电容一定不能少! APSIM-SPI还有很多有关信号奇变和仿真设计方面的特点。我们相信,现在的高速PCB板设计必须采用先进的辅助手段来进行,SPI 结合了多年来的设计经验,集合了先进的SI和PI分析技术,直接真实地仿真PCB板的具体工作状态,更加接近于实际测试结果。SPI提供了全新的调试平台,使得多年来一直凭经验设计的方法过渡到仿真环境中。大大的提高了高速PCB的一次设计成功率。SPI 在业界已经逐步成为高速PCB 设计工程师最受欢迎,最必须的设计分析工具。SPI 和业界其它PCB设计工具密切配合使用。 如Mentor Graphics, Cadence, PADS, Protel等。

『柒』 因为射频调试辐射很大,那请问有没有什么职业的芯片设计工程师不用干调试射频功能的工作

做射频多多少少都会涉及到辐射的问题,但是如果保护得当,辐射并没有传说中那么可怕。实际上我们在生活中处处接触到电磁辐射,关键是辐射量的大小。各国对于电磁辐射都有专门的标准,低于标准辐射量的可认为是安全的。
具体到做芯片设计,也不一定会牵涉到调试,视各种工作不同,一些较大的单位芯片设计和芯片测量是分开的,这种情况下,设计人员提交设计图进行加工,然后有专门的调试人员进行测试。设计人员根据测试结果更改设计。但是也有的单位就不分这么细了,设计人员会亲自做测试和调试。回到辐射的问题,如果你设计的芯片是小功率的,比如低噪放,或者干脆是无缘器件,则根本不用担心辐射的问题。如果是大功率器件+天线,则需要考虑辐射的问题,具体根据实际情况搭建测试平台,也是可以解决的。

『捌』 射频工程师应该具备哪些主要能力

射频工程师必备能力之原理图设计能力

首先自然是原理图的设计能力,当然,从无到有目前已经很少了,多数平台都会有一个大致的参考设计,就算没有,原理图设计阶段也会有平台方的大力支持。不过对于射频部分,没人帮助问题也不大,频段确定了,选好这个频段的PA,双工器,FEM或者ASM,如果不是什么不入流的厂家,链路预算也不是那么重要,大家按业内标准来做的,不会差太多。RF前端部分的原理图其实不算太难,TRX部分按照IC的DATASHEET来,有特殊注意的地方,IC厂家肯定会告知的。当然对于现成的原理图,更换一些主要器件,首先要对比下新旧器件的参数有没有大的区别,然后要一些实际的测试数据来看看,毕竟datasheet不是特别全面。大致总结下,就是说你对各射频器件都要熟悉,哪个参数什么意思,对系统有什么影响,比如一个双工,插损大0.5,收发端口隔离度差5db,带外某位置抑制差了10db,这些对系统的影响有多大,有没有临界的项会fail。虽然这些器件设计出来基本是能用的,但是这个和平台的具体设计关系也很大。这些很熟悉了,原理图部分的设计还是改动或者说优化都不会有大问题了。

射频工程师必备能力之布局能力

布局,怎么走顺大家都知道,实在不顺首先让高频接收线最短保护最好,然后是低频接收,然后是高频发射,然后是低频发射。TRXIC的设计基本也固定了你RF前端的整体布局。注意一些去耦电容的位置,都靠近芯片肯定不现实,别差太多,实在远,线别太细。具体哪个要优先考虑哪个可以靠后,你自己去分析信号属性,是时钟的,是模拟的还是数字的。同属性的也有强有弱,强的别干扰别人,弱的别被干扰。基本上布局问题也不大,现在手机环境越来越复杂,都保证设计规则是不现实的,具体怎么把握,这个才是显现能力的地方。

射频工程师必备能力之layout

这点非常重要,就是layout。个人认为好的射频工程师更应该控制好layout,其次才是后期解bug。对于layout,这就需要经验了。因为单从各IC厂家,各器件厂家的layout指导来做,一般都不会有问题。但实际肯定是不可能的,就像placement一样。这个就需要你用经验去判断在有冲突的时候,偏重优化某部分。再次强调,layout非常重要,好的射频工程师不会挖很多坑在后期慢慢解。

射频工程师必备能力之分析问题的能力

问题的分析能力。发射的,这个确实很多都是匹配导致的,比如发射功率和接收灵敏度。但是这个不难,对吧,有人卡在这里吗?那么继续,比如EVM,可能是因为PA线性不好,这个通过匹配可以搞定,如果降低功率EVM还是不行,那么就要查查TRX供电,时钟电路。如果还是不行,数字IQ也查查,不要认为数字IQ就牛的怎么走都行,走多长都行,而且多大干扰都不怕。基本上工作几年的,基本上所有的射频测试项都会遇到过fail的,但是难解的问题都不是匹配,对吧。当然有特殊情况,确实卡在匹配这,这个我后面说。

射频工程师必备能力之对系统共存问题的解决

对于对系统共存问题的解决。这个就是互扰,有传导的,也有辐射的。如果是一些射频系统内部的问题还好,对于跨系统的,比如摄像头,LCD,SD卡,马达,背光等等其他部分对射频(包含2G/3G/4G/GPS/WIFI/BT/FM)的干扰,就需要你各功能模块,各器件的性能工作原理,杂散特性都比较了解,这个相对就比较难了。还是需要长期的经验积累的。这里顺便提一下,我说这些重要,并不是说我在这部分很懂,这里估计需要标红加粗,以免有人没看到而拍砖。

测试系统的搭建,测试的准确与否还是很重要的,否则你发现的问题可能是假的。或者你不能发现问题。再或者说你的debug是在做无用功。这个需要对测试系统,或者说搭建测试系统中的各部分功能都比较熟悉,举个简单的例子,比如你用耦合器,要知道他的输入功率范围,工作频段,插损等参数。当然,这只是个最简单的例子。好了,测试能力这是基本能力,大家理解了那我继续。

射频工程师必备能力之仿真及设计能力

仿真很重要,建模的准确性更为重要。刚入行时做微带线仿真,忘记该微带模型的参数来,直接导致后面仿真出来的数据都是错误的。不过手机上大家也没啥复杂的仿真,有几个人用ADS去看匹配吗?应该没有吧。手机上主要就是算算50欧姆微带线或者带状线。用史密斯小工具看看匹配,或者仿真一个简单的高通低通滤波器。因为仿真的东西很简单了,工具也基本都是傻瓜似的,所以难度很低,你要非用ADS去仿真匹配还是射频前端什么的,那我只能说我服了YOU了。

还是要说说匹配能力,还是很重要的,毕竟初始设计还是需要优化一下的。匹配好了,其他工作才能继续进行。

就是各种仪器的使用,当然也包含各种工具吧,比如测试仪器CMU200,CMW500,8960,信号源,频谱分析仪,功率计。示波器万用表也是基本的。还有些对应的工具,比如校准工具,调试工具。这些还是最最基本的技能的,熟练使用这些仪器及工具,效率会非常高的。后想起来的,所以就放在最后了。

英语口语,英语能力最简单的是看,然后是写,然后是听,然后是说。我认识一些可能稍微小点的公司的工程师,个人能力非常强,但是就是卡在英语这,这种人大家认识不少吧,确实很可惜。其实学几天达到基本沟通不难的,大家也许把这个看的过于复杂了。不管实际上用不用口语吧,很多大公司还是有这个要求的,不过多数时候都是中国人面英语,听起来也容易。我英语确实不咋地,但是前后也好几次英语面试了,除了一次是韩国人面试,口音实在太重,其余没有卡在语言这里的。

再补充下我的论据,不要把匹配或者说史密斯看得想神明一样。我能说我确实有好几年没调过匹配了吗?N个客户,N乘X个项目,这么多项目中还有各种不同的band组合,相同的band还有N多的替代了供应商。同一家的还有2级增益的,3级增益的,PA有GAAS的,COMS的。此外还有各厂家的SAW,双工,FEM等。就没见过谁卡在匹配调试上。这里补充一下,一共遇到2次,一个是layout问题,band2双工器接地不好,隔离上不去,灵敏度差了那么2个DB。还有一个是placement的问题。所以,匹配没那么重要好不,我们更多的是关注棘手的或者紧急的问题,还没听说哪个上百M的大单因为匹配耽误了,匹配非常难调的,绝对有其他问题。接地好走线没问题,前级给了该给的信号,匹配怎么会难?国内多少客户连VNA都没有,连loadpull都不看,小半天就把匹配搞定了。

估计这个时候崇拜史密斯的工程师正在开VNA预热30分钟,校准都没搞定呢。所以不要纠结于匹配和史密斯了,这不是什么难的地方,更不是重要的地方。其实这跟焊接能力的重要差不多,不是什么高深的不得了的东西。有人为了应付面试,苦学史密斯和背各种公式,真的有必要吗?当然了,我不是不会调,带宽几百M,几个G的器件都调过,还要注意线性指标,带内平坦度,NF,相位一致性,输入输出驻波。当然,电流也要考虑。这个就手机这个频率,不要把它想的太高深,真没那么神秘。

最后我同意大家说的4GPA频率比较高,带宽比较宽,频段比较多,匹配会是比较重要的工作。不过以后趋势应该是PA模块化,也就是输入输出口都是50欧姆,而且还都是带隔直电容的。这个肯定不遥远。不过大家也不要觉得这样射频不就该下课了吗?放心吧,不会的。以后无线通信的前景还是很广阔的,至少我们这些工程师退休前还会有活干的。

与射频调试工程师相关的资料

热点内容
苏州假山景观设计工程 浏览:862
哈尔滨工程造价招聘 浏览:937
建筑工程土建劳务分包 浏览:632
道路监理工程师 浏览:476
安徽工程大学机电学院在本校吗 浏览:370
河北工程大学保研率多少 浏览:287
有学质量工程师的书吗 浏览:479
康乐县建筑工程公司 浏览:569
助理工程师二级 浏览:872
注册安全工程师初级考试时间 浏览:901
食品科学与工程专业课题研究 浏览:881
工程造价图纸建模 浏览:888
辽宁恒润建设工程有限公司 浏览:93
实行施工总承包的工程项目 浏览:737
道路桥梁工程技术兴趣爱好 浏览:316
密歇根理工大学电气工程专业 浏览:388
广西交通工程质量监督站 浏览:31
四川大学材料科学与工程学院考研参考书目 浏览:858
有线电视工程建设管理条例 浏览:270
云南工程监理公司排名 浏览:673