1. 图像算法工程师待遇高吗
的确算得上是一个入算法坑的黄金时间,曾经的条条大路通 CS 变成了条条大路通 AI,不管你曾经读的是物理还是生物,化学还是数学,只要你会 Python,会统计学基础,那时的我都会推荐你们来试一试加入算法这个坑,我也抱着体验的心态开了几次知乎 Live 都讲了一些关于算法入门相关的课,按那时候来讲,只要你「思路正常,逻辑清晰,吃苦耐劳,肯学习」,在算法这个坑里摸滚带爬四五年到现在,你要是在大厂,基本上都能拿到这个数,放一张最近的图可供参考。
图片引用至 @曾加 ,可以参考这位大佬的最新文章:
曾加:最新!互联网大厂各职级薪资对应关系图(2020年初)
zhuanlan.hu.com
图标
以我熟悉的阿里为例,文中所说的二三十人团队,那基本上就一个P8主管,下面再拆成2-3个小组,每个小组有一个P7/8带队,带着一群P5-P7干活。这就基本构成了阿里的一个最小组织单元,每年的绩效和奖金大体上都是由这位P8主管决定的,所以我们一般尊称为老板……
扯远了,其实我想表达一点,如果现在再有人来问我,学了 Python 之后怎么样加入算法坑比较好,我的建议是不加入。
我们常说的算法,本质上是统计,而统计是基于大数据的。目前能真正拥有大数据基建的企业其实并不多,能通过算法产出新价值的就更少,所以看起来搞 AI 的风风火火,其实大部分都是投资人含泪投的钱,背后能赚钱的少之又少,即便是在大厂也不例外。
所以一个目前仍不赚钱的行业,冲着心中伟大的理想和抱负,会像招开发那样花重金吸纳大批人才吗?答案明显为否,其实只需要花重金留住顶尖的算法人才即可,调包调参的 AI 选手无论何时都可以招得到,而目前大部分通过自学、培训机构出来的 AI 人才,就是这样的 tool boy。
巧的是,曾经我也是这样的 AI 选手,但谁叫我运气好,混得好不如混得早,现在转去数据分析那可就是降维打击了(手动狗头
最后再概括一下,今年是 2020 年,如果想从事算法和数据行业,建议先读一个相关专业的硕士,比如数据挖掘、图像识别等,且学校不能太非主流,不然可能简历面都过不了。
2. 算法工程师未来的发展方向35岁以后呢
技术能力是技术人员的立身之本。站在算法的角度,这里的技术能力主要是算法应用能力,包括阅读论文、算法实现、工程化以及相关文档的撰写。
技术人员常见的一个认知误区是技术大于一切,认为只要技术做好了,就应该得到认可或奖励。事实上,技术在大多数情况下只是商业中的一环,技术做得好不能确保商业上的成功。
以自营电商为例,技术人员做一款功能强大的购物APP不难,但同时必须有商品研发、供应链和物流配送才能完成一个极小的商业闭环。此外,要想商品卖得好得有市场和运营团队一起发力。在这样的背景下,购物APP只是诸多商业环节中的一个节点,因此仅仅依赖软件研发技术显然不足以实现商业上的成功。好的技术团队必须始终围绕各商业环节,有能力定位问题,并研发工具有效地解决问题。
作为算法工程师,在立项和需求评审时,需要有能力评估项目为业务带来的价值以及算法在整个项目中的价值,从而避免把精力浪费在“投入产出比”不高的事情上。如何做到这一步呢?除了有扎实的技术,还需要深入了解业务。
需要了解的业务知识包括(但不限于)商业模式、业务流程、业务限制以及与当前业务相关的技术等等。算法工程师了解业务的另一个好处是洞察需求,解决问题的同时可以发现更多的技术问题,从而推动业务的进步。
技术人员最难跨越的是从技术能力到业务能力的提升。有两方面原因:一是技术人员主观上不太愿意处理业务问题(扯皮的事情较多);二是技术人员晋升和跳槽时主要被考察的还是技术,因此业务能力在有些技术人员看来短期的收益不高。
架构能力是一种解决复杂问题的能力,它需要考虑业务的现状和未来,把复杂问题分解成简单问题,然后给出解决方案。与软件架构相比,算法架构更偏向业务,不仅要对业务进行建模和抽象,还要考虑工程实现,以便技术方案在实际业务中落地。因此,良好的技术能力和业务能力是算法架构能力的基础。
算法相关的技术项目可能涉及到与其它技术工种的配合,例如:产品经理、数据分析、数据开发、前端、后端、测试、运维等。因此,算法工程师设计的技术方案应该考虑到算法模块与其它技术模块的解耦与协同。
算法工程师做解决方案时应该从全局出发:一是技术上不仅考虑算法而且还要考虑工程实现和产品化(切忌手里有锤子,看什么都是钉子的想法);二是从整体业务的角度考虑项目带来的收益。例如,假设推荐系统的重构可以带来推荐模块的转化率提升。那么这件事情一定值得做吗?我们还应该评估这个提升效果对大盘利润的影响。如果对大盘利润的提升有限,或许应该把精力投入在更有价值的项目中。
3. 怎样考图像算法工程师
本科生、数学基础差,做图像算法工程师?别说图像算法,什么算法恐怕暂时都不能胜任。建议:1.一个让本科生做算法工程师的公司,技术上不会太有前途,要不换部门,要不换公司;
2.如果有兴趣,愿意继续干图像,从基础学起,重点突击矩阵理论、随机过程等数学,这些东西不过关,很难理解(很难看懂)图像处理中的概念、算法
4. 求推荐图像处理算法方面的经典书籍
个人认为,真正的经典推荐清华大学出版社的《图像处理、分析与机器视觉》,这本书由浅入深。数字图像处理这本书很经典,但只能算是入门,讲的更多是图像处理的算法和基本理论。而《图像处理、分析与机器视觉》这本书涵盖了图像处理算法、分析和实际的应用。图像处理说白了是为了图像特征提取和分析,然后再到图像识别等更高级的后续过程。国内大部分图像处理算法岗位其实更多是偏向应用方面,所以这本书能让你对图像处理行业整个情况更加了解,实用性更强!顺便附上电子版,看对你有没有帮助。h(去掉)ttps://p(去掉)an..com/s/184hg6h1(去掉)ST2Fqijr4FFFuRg 提取:qfid
5. 如何自学图像算法工程师
因为我学的就是计算机软件专业,所以我可以告诉你:你会 C 语言编程固然很好,但是如果仅仅依靠会 C 语言编程,想成为某一个具体领域的工程师(例如:计算机图像处理、或者是语音识别、汉字手写体识别等),那是绝对不可能的。
你还必须要学习其他的很多理论课程。例如:各种数学(高等数学、高等代数、概率统计、离散数学等)的学习就是必不可少的,因为在进行计算机图像算法程序设计时,就百分之百需要依靠建立数学模型。如果没有扎实的数学基础,就无法建立数学模型,那么即使会熟练使用 C 语言编程,那么也是无法成为一个合格的图像算法工程师。
另外,还有计算机软件的其它专业课:数据结构及其各种算法、计算机图形学等都是必须要熟练掌握的。
6. 做了半年图像算法工程师感觉很迷茫怎么办
已经不太适合了
这种工作比较累,而且做这种要经常参与加班和分工制作,大多都是那些20出头的年轻人在做这些,一个团队中,如果你因为特殊情况而不能经常来加班,也确实不怎么好
还是建议一些文职,或者是自己能控制时间的岗位会比较好
个人意见,仅作参考
7. 计算机视觉算法工程师笔试主要什么内容
你好,领学网为你解答:
计算机视觉部分:
1、考察特征点匹配算法,输入两幅图像中的特征点对,输出匹配的特征点对,(128维描述子)距离计算函数已给出无需考虑复杂度。编写伪代码,分析算法复杂度;
2、考察图像旋转。左边图像时旋转一定角度后的图像(有黑边),右边为正常图像。已知两幅图像都为WxH,以及左图像与四边的切点A1A2A3A4,设计旋转算法使左图像变换矫正成右图像,编写伪代码,分析算法复杂度及优缺点;
3、主要考察双目视觉中的标定知识。给出了双目视觉的成像原理图及相关定理和表达。第一小题,需要证明x'Fx=0 x'x为左右图像中的匹配点对,并要求给出F矩阵的秩;第二小题要求推导出最少可由多少对左右图像中匹配点可以推导出F矩阵;
4、要求写出图像处理和计算机视觉在无人飞行器中的3个重要应用。给出理由和解决方案并分析。
图像处理部分:
1、主要考察一维中值滤波,退化为区间滤波 编写伪代码,分析算法复杂度;
2、主要考察二维中值滤波,编写伪代码,分析算法复杂度;
3、如何去除脉冲噪声,图像中有大量随机产生的255和0噪声;
4、考察加权中值滤波公式推导以及一维加权中值滤波
控制部分:
对象举例均为四旋翼无人飞行器,各题目要求设计控制器,给出控制率,还有观测方案设计等等;有一题比较简单就是说明PID的各部分含义以及如何调节。
希望帮到你!
8. 零基础入行图像算法工程师需要学习哪些课程
我们实验室就是做FPGA图像处理的。建议你学习一下《信号与系统》,《数字信号处理》。然后学习一下冈萨雷斯写的《数字图像处理》那本书。有了基础之后,选定一个方向进行具体研究。图像处理的方向比较多,图像增强,图像复原,图像压缩,图像分割等等。个人感觉FPGA做图像预处理(譬如图像去噪)比较好,如果涉及较为复杂的算法,用FPGA就需要深厚的功底。毕竟FPGA的计算能力不强。总之,你先把基础打好,然后选定一个喜欢的方向深入研究。FPGA只是实现的工具。
9. 应届图像处理算法工程师需要掌握哪些
图像处理中算法很重要,所以数学根底是必须的。当然也不是说开发图像处理应用的公司只做算法,也会有用户交互,产品升级,特征控制,软件授权,等等诸多方面的内容,看你怎么发展了,对于感兴趣的事就不要说什么复杂困难,否则还不如趁早放弃。C语言是移植性强的语言,而且更接近底层,如果写算法应该学习。C++从 功能上来说是C的扩展集合,对C的关键字是兼容的,不过两者的设计理念差距很大。如果真想做,就学吧。