导航:首页 > 项目工程 > 挖工程师

挖工程师

发布时间:2021-08-16 18:07:03

㈠ 专利挖掘工程师有前途吗

机械工程师企业需要很多,专门的专利工程师很少;若该企业是高科技企业,专利较多,专利工程师提肯定有前途,升空间肯定也大,如果是普通的机械企业,专利很少,还是做机械工程师好,关键看企业的性质和自己的能力了。

㈡ 有哪位工作了的数据挖掘工程师可以回答

  1. 数据挖掘从业人员工作分析:数据挖掘从业人员的愿景:数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。

  2. A:做科研(在高校、科研单位以及大型企业,主要研究算法、应用等)

  3. B:算法工程师(在企业做数据挖掘及其相关程序算法的实现等)C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)

  4. 数据挖掘从业人员切入点:根据上面的从业方向来说说需要掌握的技能。A:做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,需要对开发、数据分析的必备基础知识。

  5. B:算法工程师:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘软件研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。

  6. C:数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《数据挖掘原理》 等书籍那就更好了。

㈢ 数据挖掘工程师是干什么的

数据挖掘指的是在长期积累的数据中分析和挖掘有价值的信息以供决策。
这个概念主要还是因为ERP(企业资源计划)和OA(办公自动化)软件系统的广泛使用和发展的基础上出现的一个概念。因为企业在使用这些软件系统的过程中,虽然运营的状态和管理以及成本有很大的节约,大大提高了企业的运营效率,可是这些系统却只能对企业的状态和管理进行一个状态性的记录,对长期记录下来的这些数据的分析和在挖掘能力是非常有限的,虽然众多软件供应商想出各种办法来利用其这些数据,比如出各种报表甚至自定义的报表,可是仍然受制于ERP和OA本身设计的缺陷,因为它们原本就不是设计来做数据分析的。

㈣ 数据挖掘工程师的工作是什么

1、根据自己对行业,以及公司业务的了解,独自承担复杂分析任务,并形成分析报告;
2、相关分析方向包括:用户行为分析、广告点击分析,业务逻辑相关以及竞争环境相关;
3、根据业务逻辑变化,设计相应分析模型并支持业务分析工作开展。
4、利用数据挖掘工具进行用户细分,用户偏好,用户网上行为等的研究;
5、进行用户调研,数据分析,商业分析,并基于业务需求,提供用户研究及数据挖掘解决方案,实施应用项目;
6、将数据挖掘算法及用户研究成果固化成数据产品;

㈤ 数据挖掘工程师有前途吗

1.城建专业助理工程师任职资格证书说明取得相应的任职资格。

㈥ 数据挖掘工程师怎么考

数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:

他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。

他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。

他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。

为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:

1、简介

如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。

2、关于数据挖掘项目

这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:

他一开始是如何描述这个项目的

项目持续了多长时间

这个项目的关键问题是什么

问题是如何得到解决的

在数据挖掘项目中最为困难的阶段是什么

最有趣的阶段又是什么

在他眼里,客户是怎么样的

团队的其他成员又是如何表现的

从中获得了什么样的经验

在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。

3、关于数据挖掘的流程

考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。

必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。

另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。

4、解决问题

软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。

5、收尾

在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。

㈦ 数据挖掘工程师一般都做什么

数据挖掘工程师是做什么的?

数据挖掘,从字面上理解,就是在数据中找到有用的东西,哪些东西有用就要看具体的业务目标了。最简单的就是统计应用了,比如电商数据,如淘宝统计过哪个省购买泳衣最多、哪个省的女生胸罩最大等,进一步,可以基于用户的浏览、点击、收藏、购买等行为推断用户的年龄、性别、购买能力、爱好等能表示一个人的画像,就相当于用这些挖掘出来的属性来刻画一个人,这些还是最简单的东西,更深层次的比如预测(股票预测),但是比较难。

数据挖掘往往与机器学习离不开。比如分类、聚类、关联规则挖掘、个性化推荐、预测、神经网络、深度学习等。

数据挖掘 = 业务知识 + 自然语言处理技术( NLP ) + 计算机视觉技术( CV ) + 机器学习 / 深度学习( ML/DL )

( 1 )其中业务知识具体指的是个性化推荐,计算广告,搜索,互联网金融等; NLP , CV 分别是处理文本,图像视频数据的领域技术,可以理解为是将非结构化数据提取转换成结构化数据;最后的ml/dl 技术则是属于模型学习理论;

( 2 )在选择岗位时,各个公司都没有一套标准的称呼,但是所做的事情无非 2 个大方向,一种是主要钻研某个领域的技术,比如自然语言处理工程师,计算机视觉工程师,机器学习工程师等;一种是将各种领域技术应用到业务场景中去解决业务需求,比如数据挖掘工程师,推荐系统工程师等;具体的称呼不重要,重要的是平时的工作内容;

PS :在互联网行业,数据挖掘相关技术应用比较成功的主要是推荐以及计算广告领域,而其中涉及到的数据主要也是文本,所以 NLP 技术相对来讲比较重要,至于 CV 技术主要还是在人工智能领域(无人车,人脸识别等)应用较多,本人了解有限,相关的描述会较少;

数据挖掘岗位需要具备的3 种基本能力

1. 工程能力

( 1 )编程基础:需要掌握一大一小两门语言,大的指 C++ 或者 Java ,小的指 Python 或者 shell 脚本;需要掌握基本的数据库语言;

建议: MySQL + python + C++ ;语言只是一种工具,看看语法就好;

推荐书籍:《 C++ primer plus 》

( 2 )开发平台: Linux ;

建议:掌握常见的命令,掌握 Linux 下的源码编译原理;

推荐书籍:《 Linux 私房菜》

( 3 )数据结构与算法分析基础:掌握常见的数据结构以及操作(线性表,队,列,字符串,树,图等),掌握常见的计算机算法(排序算法,查找算法,动态规划,递归等);

建议:多敲代码,多上 OJ 平台刷题;

推荐书籍:《大话数据结构》《剑指 offer 》

( 4 )海量数据处理平台: Hadoop ( mr 计算模型, java 开发)或者 Spark ( rdd 计算模型, scala开发),重点推荐后者;

建议:主要是会使用,有精力的话可以看看源码了解集群调度机制之类的;

推荐书籍:《大数据 spark 企业级实战》

2. 算法能力

( 1 )数学基础:概率论,数理统计,线性代数,随机过程,最优化理论

建议:这些是必须要了解的,即使没法做到基础扎实,起码也要掌握每门学科的理论体系,涉及到相应知识点时通过查阅资料可以做到无障碍理解;

( 2 )机器学习 / 深度学习:掌握 常见的机器学习模型(线性回归,逻辑回归, SVM ,感知机;决策树,随机森林, GBDT , XGBoost ;贝叶斯, KNN , K-means , EM 等);掌握常见的机器学习理论(过拟合问题,交叉验证问题,模型选择问题,模型融合问题等);掌握常见的深度学习模型( CNN ,RNN 等);

建议:这里的掌握指的是能够熟悉推导公式并能知道模型的适用场景;

推荐书籍:《统计学习方法》《机器学习》《机器学习实战》《 UFLDL 》

( 3 )自然语言处理:掌握常见的方法( tf-idf , word2vec , LDA );

3. 业务经验

( 1 )了解推荐以及计算广告相关知识;

推荐书籍:《推荐系统实践》《计算广告》

( 2 )通过参加数据挖掘竞赛熟悉相关业务场景,常见的比赛有 Kaggle ,阿里天池, datacastle 等。

想要学习数据挖掘的话可以看一下这篇文章《AI时代就业指南:数据挖掘入门与求职》

㈧ 挖掘工程师好找工作吗

数据挖掘从业人员工作分析:数据挖掘从业人员的愿景:数据挖掘就业的途径从我看来有以下几种,(注意:本文所说的数据挖掘不包括数据仓库或数据库管理员的角色)。
A:做科研(在高校、科研单位以及大型,主要研究算法、应用等)
B:算法工程师(在做数据挖掘及其相关程序算法的实现等)C:数据分析师(在存在海量数据的企事业单位做咨询、分析等)
数据挖掘从业人员切入点:根据上面的从业方向来说说需要掌握的技能。A:做科研:这里的科研相对来说比较概括,属于技术型的相对高级级别,需要对开发、数据分析的必备基础知识。
B:算法工程师:主要是实现数据挖掘现有的算法和研发新的算法以及根据实际需要结合核心算法做一些程序开发实现工作。要想扮演好这个角色,你不但需要熟悉至少一门编程语言如(C,C++,Java,Delphi等)和数据库原理和操作,对数据挖掘基础课程有所了解,读过《数据挖掘概念与技术》(韩家炜著)、《人工智能及其应用》。有一点了解以后,如果对程序比较熟悉的话并且时间允许,可以寻找一些开源的数据挖掘研究分析,也可以参考如《数据挖掘:实用机器学习技术及Java实现》等一些教程。
C:数据分析师:需要有深厚的数理统计基础,可以不知道人工智能和计算机编程等相关技术,但是需要熟练使用主流的数据挖掘(或统计分析)工具。从这个方面切入数据挖掘领域的话你需要学习《数理统计》、《概率论》、《统计学习基础:数据挖掘、推理与预测》、《金融数据挖掘》,《业务建模与数据挖掘》、《数据挖掘实践 》等,当然也少不了你使用的工具的对应说明书了,如SPSS、SAS等厂商的《SAS数据挖掘与分析》、《数据挖掘Clementine应用实务》、《EXCEL 2007数据挖掘完全手册》等,如果多看一些如《数据挖掘原理》 等书籍那就更好了。</ol>

工程机械挖掘机工程师

应该这样说,工程机械工程师,挖掘机技师,推土机技师!

发布挖掘机,工程机械,等方面的信息请上“中国挖掘机网”

网络查询“wjjw”可以找到!

㈩ 数据挖掘工程师怎么考

数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:
他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。
他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。
他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。
为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:
1、简介
如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。
2、关于数据挖掘项目
这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:
他一开始是如何描述这个项目的
项目持续了多长时间
这个项目的关键问题是什么
问题是如何得到解决的
在数据挖掘项目中最为困难的阶段是什么
最有趣的阶段又是什么
在他眼里,客户是怎么样的
团队的其他成员又是如何表现的
从中获得了什么样的经验
在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。
3、关于数据挖掘的流程
考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。

必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。

另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。
4、解决问题
软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。
5、收尾
在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。

面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。

与挖工程师相关的资料

热点内容
苏州假山景观设计工程 浏览:862
哈尔滨工程造价招聘 浏览:937
建筑工程土建劳务分包 浏览:632
道路监理工程师 浏览:476
安徽工程大学机电学院在本校吗 浏览:370
河北工程大学保研率多少 浏览:287
有学质量工程师的书吗 浏览:479
康乐县建筑工程公司 浏览:569
助理工程师二级 浏览:872
注册安全工程师初级考试时间 浏览:901
食品科学与工程专业课题研究 浏览:881
工程造价图纸建模 浏览:888
辽宁恒润建设工程有限公司 浏览:93
实行施工总承包的工程项目 浏览:737
道路桥梁工程技术兴趣爱好 浏览:316
密歇根理工大学电气工程专业 浏览:388
广西交通工程质量监督站 浏览:31
四川大学材料科学与工程学院考研参考书目 浏览:858
有线电视工程建设管理条例 浏览:270
云南工程监理公司排名 浏览:673