『壹』 应届图像处理算法工程师需要掌握哪些
图像处理中算法很重要,所以数学根底是必须的。当然也不是说开发图像处理应用的公司只做算法,也会有用户交互,产品升级,特征控制,软件授权,等等诸多方面的内容,看你怎么发展了,对于感兴趣的事就不要说什么复杂困难,否则还不如趁早放弃。C语言是移植性强的语言,而且更接近底层,如果写算法应该学习。C++从 功能上来说是C的扩展集合,对C的关键字是兼容的,不过两者的设计理念差距很大。如果真想做,就学吧。
『贰』 图像算法工程师待遇高吗
的确算得上是一个入算法坑的黄金时间,曾经的条条大路通 CS 变成了条条大路通 AI,不管你曾经读的是物理还是生物,化学还是数学,只要你会 Python,会统计学基础,那时的我都会推荐你们来试一试加入算法这个坑,我也抱着体验的心态开了几次知乎 Live 都讲了一些关于算法入门相关的课,按那时候来讲,只要你「思路正常,逻辑清晰,吃苦耐劳,肯学习」,在算法这个坑里摸滚带爬四五年到现在,你要是在大厂,基本上都能拿到这个数,放一张最近的图可供参考。
图片引用至 @曾加 ,可以参考这位大佬的最新文章:
曾加:最新!互联网大厂各职级薪资对应关系图(2020年初)
zhuanlan.hu.com
图标
以我熟悉的阿里为例,文中所说的二三十人团队,那基本上就一个P8主管,下面再拆成2-3个小组,每个小组有一个P7/8带队,带着一群P5-P7干活。这就基本构成了阿里的一个最小组织单元,每年的绩效和奖金大体上都是由这位P8主管决定的,所以我们一般尊称为老板……
扯远了,其实我想表达一点,如果现在再有人来问我,学了 Python 之后怎么样加入算法坑比较好,我的建议是不加入。
我们常说的算法,本质上是统计,而统计是基于大数据的。目前能真正拥有大数据基建的企业其实并不多,能通过算法产出新价值的就更少,所以看起来搞 AI 的风风火火,其实大部分都是投资人含泪投的钱,背后能赚钱的少之又少,即便是在大厂也不例外。
所以一个目前仍不赚钱的行业,冲着心中伟大的理想和抱负,会像招开发那样花重金吸纳大批人才吗?答案明显为否,其实只需要花重金留住顶尖的算法人才即可,调包调参的 AI 选手无论何时都可以招得到,而目前大部分通过自学、培训机构出来的 AI 人才,就是这样的 tool boy。
巧的是,曾经我也是这样的 AI 选手,但谁叫我运气好,混得好不如混得早,现在转去数据分析那可就是降维打击了(手动狗头
最后再概括一下,今年是 2020 年,如果想从事算法和数据行业,建议先读一个相关专业的硕士,比如数据挖掘、图像识别等,且学校不能太非主流,不然可能简历面都过不了。
『叁』 图像算法工程师的工作是什么大恒图像
两者其实差别都不算很大,从专业本身来说,模式识别研发就比如汽车的车牌,你怎么去识别,图像算法主要研究目的就是比如车牌你怎么让他更清楚地被你采集后得到有用的信息,还原图片的原来面目等。都是算法类的研究,当然算法也是离不开程序的,如果你对软件不敢新区,那么这两个专业都不是适合你。
『肆』 算法工程师 就业前景
一、算法工程师简介
(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)
算法工程师目前是一个高端也是相对紧缺的职位;
算法工程师包括
音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(
@之介
感谢补充)、其他【其他一切需要复杂算法的行业】
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师的技能树(不同方向差异较大,此处仅供参考)
1 机器学习
2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI
3 数据挖掘
4 扎实的数学功底
5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R
加分项:具有较为丰富的项目实践经验(不是水论文的哪种)
二、算法工程师大致分类与技术要求
(一)图像算法/计算机视觉工程师类
包括
图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:机器学习,模式识别
l
技术要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;
(2) 语言:精通C/C++;
(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;
(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;
(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;
(7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;
应用领域:
(1) 互联网:如美颜app
(2) 医学领域:如临床医学图像
(3) 汽车领域
(4) 人工智能
相关术语:
(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程
(2) Matlab:商业数学软件;
(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。
(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。
(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。
(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。
(二)机器学习工程师
包括
机器学习工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:人工智能,机器学习
l
技术要求:
(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;
(2) 大数据挖掘;
(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;
应用领域:
(1)人工智能,比如各类仿真、拟人应用,如机器人
(2)医疗用于各类拟合预测
(3)金融高频交易
(4)互联网数据挖掘、关联推荐
(5)无人汽车,无人机
相关术语:
(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(三)自然语言处理工程师
包括
自然语言处理工程师
要求
l
专业:计算机相关专业;
l
技术领域:文本数据库
l
技术要求:
(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;
(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;
(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;
(4) 人工智能,分布式处理Hadoop;
(5) 数据结构和算法;
应用领域:
口语输入、书面语输入
、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。
相关术语:
(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】
(四)射频/通信/信号算法工程师类
包括
3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师
要求
l
专业:计算机、通信相关专业;
l
技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理
l
技术要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;
(2) 信号处理技术,通信算法;
(3) 熟悉同步、均衡、信道译码等算法的基本原理;
(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;
(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学
应用领域:
通信
VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】
物联网,车联网
导航,军事,卫星,雷达
相关术语:
(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。
(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】
(4) DSP:数字信号处理,也指数字信号处理芯片
(五)数据挖掘算法工程师类
包括
推荐算法工程师,数据挖掘算法工程师
要求
l
专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;
l
技术领域:机器学习,数据挖掘
l
技术要求:
(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;
(2) 熟练使用SQL、Matlab、Python等工具优先;
(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】
(4) 数学基础要好,如高数,统计学,数据结构
l
加分项:数据挖掘建模大赛;
应用领域
(1) 个性化推荐
(2) 广告投放
(3) 大数据分析
相关术语
Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(六)搜索算法工程师
要求
l
技术领域:自然语言
l
技术要求:
(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验
(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;
(5) 精通倒排索引、全文检索、分词、排序等相关技术;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;
(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。
(七)控制算法工程师类
包括了云台控制算法,飞控控制算法,机器人控制算法
要求
l
专业:计算机,电子信息工程,航天航空,自动化
l
技术要求:
(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动
(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;
l
加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;
应用领域
(1)医疗/工业机械设备
(2)工业机器人
(3)机器人
(4)无人机飞控、云台控制等
(八)导航算法工程师
要求
l 专业:计算机,电子信息工程,航天航空,自动化
l 技术要求(以公司职位JD为例)
公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;
(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;
(3)具备导航方案设计和实现的工程经验;
(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;
公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;
(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;
应用领域
无人机、机器人等。
『伍』 怎样考图像算法工程师
本科生、数学基础差,做图像算法工程师?别说图像算法,什么算法恐怕暂时都不能胜任。建议:1.一个让本科生做算法工程师的公司,技术上不会太有前途,要不换部门,要不换公司;
2.如果有兴趣,愿意继续干图像,从基础学起,重点突击矩阵理论、随机过程等数学,这些东西不过关,很难理解(很难看懂)图像处理中的概念、算法
『陆』 做了半年图像算法工程师感觉很迷茫怎么办
已经不太适合了
这种工作比较累,而且做这种要经常参与加班和分工制作,大多都是那些20出头的年轻人在做这些,一个团队中,如果你因为特殊情况而不能经常来加班,也确实不怎么好
还是建议一些文职,或者是自己能控制时间的岗位会比较好
个人意见,仅作参考
『柒』 图像算法工程师去哪个企业比较好
两者其实差别都不算很大,从专业本身来说,模式识别研发就比如汽车的车牌,你怎么去识别,图像算法主要研究目的就是比如车牌你怎么让他更清楚地被你采集后得到有用的信息,还原图片的原来面目等。都是算法类的研究,当然算法也是离不开程序的
『捌』 零基础入行图像算法工程师需要学习哪些课程
我们实验室就是做FPGA图像处理的。建议你学习一下《信号与系统》,《数字信号处理》。然后学习一下冈萨雷斯写的《数字图像处理》那本书。有了基础之后,选定一个方向进行具体研究。图像处理的方向比较多,图像增强,图像复原,图像压缩,图像分割等等。个人感觉FPGA做图像预处理(譬如图像去噪)比较好,如果涉及较为复杂的算法,用FPGA就需要深厚的功底。毕竟FPGA的计算能力不强。总之,你先把基础打好,然后选定一个喜欢的方向深入研究。FPGA只是实现的工具。
『玖』 如何自学图像算法工程师
因为我学的就是计算机软件专业,所以我可以告诉你:你会 C 语言编程固然很好,但是如果仅仅依靠会 C 语言编程,想成为某一个具体领域的工程师(例如:计算机图像处理、或者是语音识别、汉字手写体识别等),那是绝对不可能的。
你还必须要学习其他的很多理论课程。例如:各种数学(高等数学、高等代数、概率统计、离散数学等)的学习就是必不可少的,因为在进行计算机图像算法程序设计时,就百分之百需要依靠建立数学模型。如果没有扎实的数学基础,就无法建立数学模型,那么即使会熟练使用 C 语言编程,那么也是无法成为一个合格的图像算法工程师。
另外,还有计算机软件的其它专业课:数据结构及其各种算法、计算机图形学等都是必须要熟练掌握的。