❶ 大数据分析开发工程师可以从事哪些工作这些岗位有需要做什么
岗位举例:
大数据工程师、大数据处理工程师、大数据分析挖掘工程师
岗位职责:
负责公司基于海量数据的云服务平台的架构和研发;
根据业务规则与分析模型实现数据建模、数据挖掘提取、数据分析、数据展示工作,编制数据分析报告;
理解业务的方向和战略,收集互联网数据,并结合行业数据,开发有效的数据模型,根据用户属性,挖掘用户需求;
通过用户行为分析,为产品、流程改进和技术解决方案提供基于运营数据分析的支持;
❷ 分析如何成为一名大数据开发工程师
1、认识大数据
大数据开发工程师,首先你得熟悉关系型数据库,比如Oracle或者MySQL,熟悉之后,有利于数据仓库的开发;再次熟悉Hadoop,这个都是现在大数据领域中用的最多的一个技术,它的HDFS可以实现分布式存储,Yarn是一个优秀的资源调度框架
2、大数据所需技能要求
必须掌握的技能:
Java高级(虚拟机、并发)、Linux 基本操作、Hadoop(HDFS+MapRece+Yarn )、 HBase(JavaAPI操作+Phoenix )、Hive(Hql基本操作和原理理解)、 Kafka、Storm/JStorm、Scala、Python、Spark (Core+sparksql+Spark streaming ) 、辅助小工具(Sqoop/Flume/Oozie/Hue等)
❸ 大数据分析师和大数据工程师的区别
一个在前端搭建平台软件使数据采集更高效更全面更准确,一个在后端处理原始数据,清洗数据,建立分析模型进行分析,就像开采石油,怎么采,去哪儿采是工程师的工作,把原油进行分解,提炼,萃取是分析师的工作
❹ 什么是大数据应用工程师
用阿里巴巴集团研究员薛贵荣的话来说,大数据工程师就是一群“玩数据”的人,玩出数据的商业价值,让数据变成生产力。大数据和传统数据的最大区别在于,它是在线的、实时的,规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
沈志勇认为如果把大数据想象成一座不停累积的矿山,那么大数据工程师的工作就是,“第一步,定位并抽取信息所在的数据集,相当于探矿和采矿。第二步,把它变成直接可以做判断的信息,相当于冶炼。最后是应用,把数据可视化等。”
因此分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。
❺ 大数据工程师到底是什么
用阿里巴巴集团研究员薛贵荣的话来说,大数据工程师就是一群“玩数据”的人,玩出数据的商业价值,让数据变成生产力。大数据和传统数据的最大区别在于,它是在线的、实时的,规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
沈志勇认为如果把大数据想象成一座不停累积的矿山,那么大数据工程师的工作就是,“第一步,定位并抽取信息所在的数据集,相当于探矿和采矿。第二步,把它变成直接可以做判断的信息,相当于冶炼。最后是应用,把数据可视化等。”
因此分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。
❻ 大数据分析师是什么职业
数据分析主要是做数据的收集、挖掘、清洗、分析,最后形成具有业务价值的分析报告.
大包括数据体量的大,也包括数据维度的广.
大数据工程师是个很重要的工作,就是通过分析数据来找出过去事件的特征。通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。
举例
今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
而大数据分析师需要掌握的技能有五点
懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,较好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
懂管理。
方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另
方面的作用是针对数据分析结论提出有指导意义的分析建议。
懂分析。指掌握数据分析基本原理与
些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高
的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果
目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握
定的设计原则。
❼ 大数据工程师主要做什么
当前大数据平台开发岗位的附加值还是比较高的,大数据平台开发岗位往往集中在大型互联网企业,随着云计算逐渐从IaaS向PaaS过渡,大数据平台开发也会基于行业特点来开发针对性比较强的PaaS平台,这是整合行业资源并搭建技术生态的一个关键。搭建PaaS平台不仅需要掌握大数据知识,同时还需要掌握云计算知识,实际上大数据和云计算本身就有比较紧密的联系,二者在技术体系结构上都是以分布式存储和分布式计算为基础,只不过关注点不同而已。
大数据运维工程师以搭建大数据平台为主,虽然这部分岗位的门槛相对比较低,但是需要学习的内容还是比较多的,而且内容也比较杂,网络知识、数据库管理知识、操作系统(Linux)知识、大数据平台(含开源和商用平台)知识都需要掌握一些,对于实践操作的要求会比较高。
最后,当前大数据工程师往往并不包含专业的数据分析岗位,一般数据分析岗位都会单独列出来,这部分岗位涉及到算法岗、开发岗(实现)和数据呈现岗等,数据分析岗位对于从业者的数学基础要求比较高,同时还需要掌握大量的数据分析工具,当然也离不开Python、Sql等知识。
❽ 大数据工程师是做什么的
大数据工程师主要是,分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务:
找出过去事件的特征:大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。
预测未来可能发生的事情:通过引入关键因素,大数据工程师可以预测未来的消费趋势。
找出最优化的结果:根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。
(8)大数据分析工程师扩展阅读
大数据工程师需要学习的知识
1、linux
大数据集群主要建立在linux操作系统上,Linux是一套免费使用和自由传播的类Unix操作系统。而这部分的内容是大家在学习大数据中必须要学习的,只有学好Linux才能在工作中更加的得心应手。
2、Hadoop
我觉的大家听过大数据就一定会听过hadoop。Hadoop是一个能够对大量数据进行离线分布式处理的软件框架,运算时利用maprece对数据进行处理。
❾ 大数据工程师需要掌握哪些技能
大数据技术体系庞大,包括的知识较多
1、学习大数据首先要学习Java基础
Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学hadoop
2、学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
3、学习大数据需要具备的能力
数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛。
❿ 大数据工程师和数据分析师有什么区别
数据工程师的重心在“后端”,他们需要持续的优化数据通道,才能保证企业数据的准确性与可用性。同时还需确保在需要的时候能够顺畅地将数据提供给用户。
数据分析师则是通过使用数据工程师所构建的自定义API来提取新的数据集,并对其中的数据趋势进行识别,同时对异常数据进行分析。分析师们将会对结果进行总结,并以一种清晰直观的方式来展示这些结果,以便于其它非技术团队能够更好地了解他们目前的工作效果。