导航:首页 > 建筑工程 > 建筑工程水泥水玻璃双液注浆技术规程

建筑工程水泥水玻璃双液注浆技术规程

发布时间:2021-08-16 21:06:15

① 水玻璃水泥浆的配制是多少

采用水泥-水玻璃浆液。水泥浆与水玻璃体积比1:0.5;水泥浆水灰比1:1;水玻璃浓度35波美度;水玻璃模数2.4;注浆压力初压0.5~1.0MPA;终压2.0MPA。

② 水玻璃水泥浆的配制是多少

采用水泥-水玻璃浆液,水泥浆与水玻璃体积比1:0.5;水泥浆水灰比1:1。

水泥-水玻璃浆液是以水泥和水玻璃为主剂,两者按一定的比例,采用双液方式注入,必要时加入速凝剂和缓凝剂所形成的注浆材料。这种浆液克服了单液水泥浆的凝结时间长且难以控制、动水条件下结石率低等缺点,提高了水泥注浆的效果,扩大了水泥注浆的范围。适用于隧道大涌水、突泥封堵及岩溶流塑粒土的劈裂固结,在地下水流速较大的地层中采用这种混合型浆液可达到快速堵漏的目的。也可用于防渗和加固注浆,它是隧道施工中的主要注浆浆材。

③ 普通水泥-水玻璃双液浆

普通水泥-水玻璃双液浆是将普通水泥浆和水玻璃溶液作为两种主要成分,按照一定的比例,采用双液浆灌注工艺进行注浆。由于普通水泥-水玻璃双液浆凝胶时间短(从几秒钟至几十分钟可调),注浆体结石率高(达到95%以上),并且具有一定的强度,因此,对于堵水,特别是水压较高、水流速较快,以及当填充宽度较大的岩溶裂隙时经常采用。普通水泥-水玻璃双液浆简称C-S浆液,C代表水泥(Cement),S代表水玻璃(Silicate)。

3.4.2.1 浆液凝胶机理

在水泥浆中加入水玻璃,水玻璃与硅酸三钙水化反应生成的氢氧化钙很快反应,生成凝胶性硅酸钙。

3CaO·SiO2+nH2O→2CaO·SiO2·(n-1)H2O+Ca(OH)2(水泥水化反应)

Ca(OH)2+Na2O·nSiO2+mH2O→CaO·nSiO2·mH2O↓+2NaOH

3.4.2.2 水玻璃

水玻璃又称泡花碱,其主要成分为Na2O·nSiO2

模数M是水玻璃性能的一个重要指标参数,模数M定义为:

地下工程注浆技术

水玻璃模数的大小对注浆影响很大。模数小时,二氧化硅含量低,凝胶时间长,结石体强度低;模数大时,二氧化硅含量高,凝胶时间短,结石体强度高,模数过大过小都对注浆不利,因此,注浆时,一般要求水玻璃模数在2.4~3.4之间较为合适。

水玻璃浓度用波美度Be′表示。波美度与密度ρ之间换算关系如下:

地下工程注浆技术

水玻璃出厂浓度一般为50~56Be′,而现场注浆使用的范围一般为30~45Be′,有时,为减少水玻璃用量,也可将水玻璃稀释到20~25Be′。

3.4.2.3 水玻璃离析问题

水玻璃作为普通水泥-水玻璃双液浆的主要原材料,用量很大。为降低工程造价,一般购置高浓度的浓水玻璃,在现场施工过程中进行稀释。在工程注浆施工中,为了提高施工效率,施工中水玻璃采取洞外稀释到设计浓度后,再运入洞内放入水玻璃储浆桶中待用的方法,因而会造成水玻璃溶液的长时间静置。水玻璃溶液长时间静置后,是否会产生较大离析?是否会严重影响现场使用?是否需要静置一段时间后对水玻璃溶液重新进行搅拌均匀?此等一系列问题的解决对于注浆施工质量有着十分重要的影响,因而,应对水玻璃溶液的离析问题进行试验研究,确定出合理的处理措施。

(1)试验仪器

量筒、吸管、天平、玻璃棒、温度计、吸耳球、波美计等。

(2)原材料

水玻璃:模数2.9~3.2 ,浓度37Be′,湖南龙山县永兴民族化工有限责任公司生产。

(3)试验步骤

1)将37Be′的浓水玻璃稀释至30Be′,然后分别倒入15个500mL的量筒中,倒入量均为500mL。

2)分别在第1、3、5、7、10天每次用吸管从上到下依次取体积25mL、25mL、50mL、100mL、100mL、100mL 的液体,即总体积的 5%、10%、20%、40%、60%、80%、100%体积点相对应溶液量,用天平称量出其质量,推算出密度。

3)每次测3组求出其密度平均值,并换算为波美度。

4)分别绘制出第1、3、5、7、10天各体积点的密度图。

5)根据以上数据绘出离析率与放置时间的关系。

(4)标准的提出

试验中配置的标准水玻璃溶液的浓度为30Be′。针对普通水泥-水玻璃双液浆,在现场注浆施工中当水玻璃浓度为25~35Be′时,一般对注浆材料的凝胶时间和抗压强度等性能指标影响不大,因而可提出如下标准:针对普通水泥-水玻璃双液浆,当水玻璃浓度选择采用30Be′时,适宜于正常施工的水玻璃浓度上限为35Be′,下限为25Be′。

(5)试验一

室内试验从2001年8月12日开始。经对试验所获得的数据分析,得出每天各体积点与密度的关系,如图3-5。离析率与放置时间关系曲线如图3-6。

图3-5 体积百分点的浓度曲线

图3-6 离析率与放置时间关系曲线

从体积百分点的浓度曲线、离析率与放置时间关系曲线可以看出:

1)水玻璃溶液静置后,水玻璃的浓度随体积百分点呈增大的趋势,这可以说明在水玻璃静置过程中有一定的离析现象发生,但离析影响度不大,基本不影响其正常使用。分析认为:对于水玻璃而言,水玻璃应溶解于水,但由于并非纯水玻璃,因而存在一定的离析现象,但影响不大。

2)静置一段时间后,当水玻璃溶液的体积百分点大于90%,其离析材料的浓度超过了上限值35Be′,最大浓度达到37.2Be′。据分析,引起浓度变大的原因并不是离析的结果,而是由于原水玻璃存在杂质(体积约为60mL),静置后杂质沉淀从而引起溶液浓度的上升,因此,在购进水玻璃时,应严格控制产品质量。

3)从体积百分点的浓度曲线可以明显看出:所有溶液在体积点20%时浓度较高,这可能是因为外界温度较高而引起溶液表面水分的蒸发,同时水玻璃溶液又具有较大的黏度,从而形成表面张力,使得接近表面的溶液浓度较高。

(6)试验二

本次试验采用经过沉淀的水玻璃。试验中同样配制标准溶液的浓度为30Be′,采取与试验一相同的试验方法,并对试验溶液进行密封,以减少溶液体积的损失。同时取等量(500mL)水于未封闭的量筒中,与溶液进行体积损失对比。

经对试验所获得的数据计算分析,得出各体积点与密度的关系曲线如图3-7所示。

图3-7 体积百分点与密度的关系曲线

由测试数据和体积百分点与密度的关系曲线来看:

1)由于本次试验所取的原水玻璃已经经过一段时间的静置,试验中溶液的沉淀量比第一次有明显的减少,沉淀量由第一次的60mL减少到本次的25mL,减少率为58.33%。

2)每天测试的水玻璃浓度随溶液体积百分点的增加也有一定的上升趋势,但不是很明显,可见水玻璃稀释后产生离析不大,对于离析现象不是因为水玻璃的离析产生,这主要还是由于溶液中含有一定量的杂质引起的。

3)从10天中5次测试结果曲线可以看出:各条曲线的趋势差异基本一致,且起伏较小,都能满足标准要求。

4)试验中所取等量未封闭水在10天内的损失量达75mL,这和第一次试验中水玻璃损失量50mL相比略大,这充分可以说明在第一次试验中水玻璃溶液存在水分蒸发损失,同时由于水玻璃表面张力的存在,水玻璃损失较对比试验中水的损失略小。同时也可以证明试验一中溶液在体积点为20%时浓度较高主要是因为溶液表面水分的蒸发而导致接近表面的溶液浓度的升高。

(7)结论

从以上两次试验可以得出,在正常情况下水玻璃溶液静置10天之内不会发生较大的离析现象,不会影响其正常的施工性能。所以可以采取洞外稀释到设计浓度再运进洞内放入水玻璃储浆桶中使用。但应加强密封和温度控制,避免其中水分蒸发。

3.4.2.4 浆液配制

(1)普通水泥浆配制。

1)根据预配制水泥浆的体积,按水灰比和缓凝剂掺量计算出所需要的水泥、水和缓凝剂的用量。

2)根据用量,首先在容器中加入水和缓凝剂,强力搅拌,待缓凝剂充分溶解后,加入水泥,强力搅拌,混合均匀。

(2)水玻璃浆配制

水玻璃浆的配制是指高浓度水玻璃的稀释。水玻璃浆的配制一般有两种方法。

第一种方法:①根据预配制水玻璃浆的体积,分别计算出稀释前所需要的浓水玻璃的体积和稀释用水的体积。

根据质量守恒原理:

地下工程注浆技术

式中:m稀S为稀释前浓水玻璃质量(g);mW为稀释过程中加入水的质量(g);m稀S为稀释后稀水玻璃质量(g)。

根据体积守恒原理(近似计算):

地下工程注浆技术

式中:V浓S为稀释前浓水玻璃体积(cm3);VW为稀释过程中加入水的体积(cm3);V稀S为稀释后稀水玻璃体积(cm3)。

地下工程注浆技术

地下工程注浆技术

地下工程注浆技术

式中:ρ浓S为稀释前浓水玻璃密度(g/cm3);ρ稀S为稀释后稀水玻璃密度(g/cm3);ρW为水的密度(g/cm3),取1。

根据以上公式,推导出浓水玻璃和水的用量,计算公式为:

地下工程注浆技术

地下工程注浆技术

公式中ρ浓S、ρ稀S可由下式计算:

地下工程注浆技术

地下工程注浆技术

式中:

为稀释前浓水玻璃波美度;

为稀释后稀水玻璃波美度。

②根据用量,首先在容器中加入浓水玻璃,然后加入一定量的水,搅拌均匀即可。

第二种方法:

在浓水玻璃中加入水,边加水边搅拌,边用波美计测试其浓度,到达所需要的稀浓度时为止。

3.4.2.5 主要性能指标

(1)凝胶时间

1)水泥浆浓度对凝胶时间的影响。采用40Be′的水玻璃,水泥浆与水玻璃体积比1∶1 ,采用水泥浆水灰比(简称W∶C)分别为0.6∶1、0.75∶1、1∶1、1.5∶1配制浆液,测试浆液凝胶时间,测试结果见表3-4。

表3-4 不同水灰比时水泥-水玻璃双液浆凝胶时间

根据试验测试数据,绘制水泥浆水灰比对浆液凝胶时间的影响曲线,如图3-8。

图3-8 水灰比对凝胶时间影响曲线

由水泥浆水灰比对凝胶时间影响曲线来看:水灰比越大,浆液凝胶时间越长,因此,在现场注浆施工过程中,可能通过调整水泥浆的配比来获得较短的凝胶时间,以达到快速堵水目的。

2)水玻璃浓度对凝胶时间的影响。采用水灰比0.5∶1、1∶1、1.5∶1的水泥浆,水泥浆与水玻璃体积比为1∶1,水玻璃浓度分别为35Be′、40Be′、45Be′配制浆液,测试浆液凝胶时间,测试结果见表3-5。

表3-5 不同水玻璃浓度时水泥-水玻璃双液浆凝胶时间

根据试验测试数据,绘制水玻璃浓度对浆液凝胶时间的影响曲线,如图3-9。

图3-9 水玻璃浓度对凝胶时间影响曲线

由水玻璃浓度对凝胶时间影响曲线来看:水玻璃越浓,浆液凝胶时间越长。

3)水泥浆与水玻璃体积比(简称C∶S)对凝胶时间的影响。采用水灰比为1∶1的水泥浆,35Be′的水玻璃,水泥浆与水玻璃体积比按1∶0.3~1∶1配制浆液,测试浆液凝胶时间,测试结果见表3-6。

根据试验测试数据,绘制水泥浆与水玻璃体积比对凝胶时间的影响曲线,如图3-10。

表3-6 不同水泥浆与水玻璃体积比时水泥-水玻璃双液浆凝胶时间

由水泥浆与水玻璃体积比对凝胶时间影响曲线来看:在1∶0.3~1∶1 范围内,随着水玻璃用量的减少,浆液凝胶时间缩短。因此,在现场注浆施工中,可以通过注浆泵调节水泥浆与水玻璃的用量比例,以获得较短的凝胶时间,从而达到快速堵水的目的。

4)缓凝剂掺量对凝胶时间的影响。采用水灰比为1∶1的水泥浆,40Be′的水玻璃,水泥浆与水玻璃体积比为1∶1 ,分别掺入0、2%、2.25%、2.5%缓凝剂(磷酸氢二钠)配制浆液,测试浆液凝胶时间,测试结果见表3-7。

根据试验测试数据,绘制缓凝剂掺量对凝胶时间的影响曲线,如图3-11。

由缓凝剂掺量对凝胶时间影响曲线来看:当缓凝剂掺量小于1.5%时,对凝胶时间缓凝效果不大;当缓凝剂掺量为2%~3%时,有着较好的缓凝效果,因此,为确保注浆工艺的实施,施工中可根据需要,合理地掺加缓凝剂。如施工中需要掺加缓凝剂,应进行室内试验,同时,应在现场注浆施工中加强凝胶时间的测试。

表3-7 不同缓凝剂掺量时水泥-水玻璃双液浆凝胶时间

图3-10 水泥浆与水玻璃体积比对凝胶时间影响曲线

图3-11 缓凝剂掺量对凝胶时间影响曲线

(2)抗压强度

1)水泥浆浓度对抗压强度的影响。采用40Be′的水玻璃,水泥浆与水玻璃体积比1∶1 ,水泥浆水灰比分别为0.6∶1、0.75∶1、1∶1、1.5∶1 配制浆液,测试浆液抗压强度,测试结果见表3-8。

表3-8 不同水灰比时水泥-水玻璃双液浆抗压强度

根据测试数据,绘制水泥浆水灰比对浆液抗压强度的影响曲线,如图3-12。

由水泥浆水灰比对抗压强度影响曲线来看,水灰比越大,浆液抗压强度越小,同时,当水泥浆水灰比大于1∶1时,早期抗压强度值较小,因此,在注浆施工过程中,可以通过调整水泥浆的配比来获得较高的抗压强度,同时,建议水泥浆水灰比不宜大于1∶1。

图3-12 水灰比对抗压强度影响曲线

图3-13 水泥浆与水玻璃体积比对抗压强度影响曲线

2)水泥浆与水玻璃体积比对抗压强度的影响。采用水灰比为1∶1的水泥浆,35Be′的水玻璃,水泥浆与水玻璃体积比按1∶0.3~1∶1 配制浆液,测试浆液抗压强度,测试结果见表3-9。

表3-9 不同水泥浆与水玻璃体积比时水泥-水玻璃双液浆抗压强度

根据测试数据,绘制水泥浆与水玻璃体积比对抗压强度的影响曲线,如图3-13。

由水泥浆与水玻璃体积比对抗压强度影响曲线来看,其间相关性十分复杂。在1∶0.3~1∶0.5之间,体积比越大,浆液抗压强度越低;在1∶0.5~1∶0.6之间,体积比越大,浆液抗压强度越高;在1∶0.6~1∶0.7之间,体积比越大,浆液抗压强度越低;在1∶0.7~1∶1之间,体积比越大,浆液抗压强度越高。也就是说,当体积比为1∶0.5时,存在着一个抗压强度高峰值;而在1∶0.6时,存在着一个抗压强度低峰值。因此,在注浆施工中,进行双液浆比例调整时,宜采用1∶0.5体积比值。

3.4.2.6 浆液优缺点

优点:①凝胶时间可控,可以达到控域注浆目的。②可注性较好,在扰动后的粉细砂层中有一定的可注性。③早期强度较高,利于注浆后就立即进行开挖施工。

缺点:①颗粒粗,在未扰动的粉细砂层中可注性差。②抗压、抗剪强度较低,易被高压水破坏。

3.4.2.7 适用范围

1)适用于渗透系数大于10-2cm/s中粗砂、粗砂、砂砾石、砂卵石,以及断层破碎带注浆堵水工程中。

2)在断层破碎带注浆时,如采用单液浆,在注浆过程中注浆压力长时间不上升时,应采用普通水泥-水玻璃双液浆注浆,以控制注浆扩散范围。

3.4.2.8 使用注意事项

1)普通水泥浆宜采用32.5 R、42.5 R普通硅酸盐水泥配制,以保证强度。

2)注浆材料配比:水泥浆水灰比不宜大于1∶1;水泥浆与水玻璃体积比不宜小于1∶1;缓凝剂慎用,当工艺要求需要延长浆液凝胶时间时,缓凝剂掺量不宜大于2%。

3)水泥浆拌制时,使用普通搅拌机时,浆液搅拌时间不应短于3min;使用高速搅拌机时,浆液搅拌时间不应短于30sec。

4)浆液应随用随配,水泥浆搅拌时间大于4 h时不宜使用,应做废弃处理。

5)现场注浆时操作顺序如下:①先注水泥浆,待确定管路及地层吸浆正常时,再开始注水泥-水玻璃双液浆。②结束注浆时,改注水泥浆约3min,之后,注水。注水时间根据管路长度,通过试验确定,以确保水不注入地层。③打开泄压阀泄压。④拆卸孔口连接,注水对管路进行冲洗。冲洗时,应采用铁锤等器具由泵体出浆口沿管路敲击,以彻底使管路通畅。

④ 水玻璃注浆施工方案

固结灌浆施工要点及注意事项
一、钻孔施工
1、必须按设计要求施工钻孔,孔位、孔距误差不得大于5公分,孔斜不大于2º。
2、终孔后必须洗孔,深度必须达到设计要求,孔深误差不得大于10公分,如果验孔不合格,必须重新扫孔并冲洗干净。
3、必须严格记录混凝土、卵石层、基岩深度位置及孔内溶洞、裂隙位置,并及时告知技术人员。
4、段钻孔施工必须分序按孔号顺序进行,未经技术人员同意,不得施工下序孔。
5、及时回答技术人员提出的有关施工方面的问题。
二、灌浆施工
1、钻孔验收合格后,必须及时灌浆,相邻孔不得同时灌浆。
2、基岩灌浆以5:1和2:1浆液为主,压力控制在0.2~0.5MPa,并按照实际情况作适当调整。进浆量小于1升/分时,连续灌注30分钟即可结束灌浆。如果2:1灌入吸浆量大时,可变为1:1或0.5:1灌注,如果浓浆吸浆量还是很大,应采用间歇法和加处理剂法灌浆,并及时请示技术人员确定灌浆方案。
3、砂卵石层灌浆,初灌用2:1浆液,如果有灌压,应多灌该比级浆液,灌压大于0.2MPa时,可不变换浆液浓度。如果吸浆量不变或增大而灌压不上升时,可变浓一级浆液灌注,直至吸浆量变小灌压升高(应控制在0.2~0.3MPa)时,才不变水灰比。当浓浆水灰比达到0.5:1仍无灌压时,应加砂、粉煤灰、锯末、水玻璃、海带等材料进行处理,并及时请示技术人员确定处理方案。
4、灌压控制范围 :
10-20m段基岩 0.3~0.5MPa
7-10m段基岩 0.3~0.4Pa
0.5-7m段卵石及基岩强风化段 0.1~0.2MPa
5、灌浆时必须严格按要求进行分段灌浆。止浆塞应止塞好。灌浆中,必须随时观察有无串浆、冒浆情况,如果串浆,必须将串浆孔止塞封闭,如果地层冒浆,应及时降压,限量灌入,采用浓浆闭浆法施工。
6、固结灌浆宜在有混凝土覆盖的情况下进行。钻孔灌浆必须在相应部位的混凝土达到50%设计强度后,方可开始。
7、固结灌浆应按分序加密的原则进行,可分为二序或三序施工;安排总体工程进度时,对固结灌浆施工时间应作合理安排。
8、固结灌浆孔相互串浆时,可采用群孔并联灌注,孔数不宜多于3个,并应控制压力,防止混凝土面或岩石面抬动。
9、固结灌浆浆液比级和变换,可参照帷幕灌浆的规定根据工程具体情况确定。
10、固结灌浆,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min,灌浆可以结束;固结灌浆孔封孔应采用“机械压浆封孔法”或“压力灌浆封孔法”。
11、当压力达到设计值时,严禁升压灌浆。严禁开盘用浓浆。
12、其它按技术规范和现场技术人员的有关指令执行。

⑤ 水泥水玻璃双液浆是什么

首先水玻璃是由碱金属氧化物和二氧化硅结合而成的可溶性碱金属硅酸盐材料,又称泡花碱。
水泥水玻璃浆液则是以水泥和水玻璃为主剂,两者按一定的比例,采用双液方式注入,必要时加入速凝剂和缓凝剂所形成的注浆材料。
这种浆液克服了单液水泥浆的凝结时间长且难以控制、动水条件下结石率低等缺点,提高了水泥注浆的效果,扩大了水泥注浆的范围。适用于隧道大涌水、突泥封堵及岩溶流塑粒土的劈裂固结,在地下水流速较大的地层中采用这种混合型浆液可达到快速堵漏的目的。也可用于防渗和加固注浆,它是隧道施工中的主要注浆浆材。浆液可控性好,凝胶时间可准确控制在几秒至几十分钟范围内;浆液凝结后的结石率高;该浆液适宜于0.2MM以上裂隙及1MM以上粒径的砂层使用

⑥ 新型建筑材料如何进入设计规范目录

注:本次目录更新根据中国建筑工业出版社最新<2014年07月年版>整理。

1. 地基与基础关注公号建筑施工资料,领取资料课件

⑦ 求一个水泥水玻璃双浆配比 要求凝结时间为2分钟

采用水泥-水玻璃浆液,
水泥浆与水玻璃体积比1:0.5;
水泥浆水灰比1:1。

⑧ 超细水泥-水玻璃双液浆

超细水泥具有颗粒细,可注入性好的优点,超细水泥在我国坝基工程裂缝处理施工中已多有采用。采用超细水泥替代普通水泥,配制超细水泥-水玻璃双液浆,能达到砂类地层“注浆堵水、固结砂层”的目的。超细水泥-水玻璃双液浆简称MC-S浆。

(1)原材料

1)超细水泥(简称MC):浙江金华华夏灌浆材料厂20μm超细水泥。

2)水玻璃(简称S):广州人民化工厂51Be′,模数M=2.5。

3)缓凝剂:工业品,磷酸氢二钠,分子式为Na2HPO4

(2)浆液配制

超细水泥-水玻璃双液浆和普通水泥-水玻璃双液浆配制相同,即首先配制超细水泥浆和水玻璃浆两种单液浆,然后将两种单液浆混和即可。

(3)主要性能指标

1)凝胶时间。超细水泥-水玻璃双液浆的凝胶时间主要受超细水泥浆水灰比、水玻璃浓度、超细水泥浆和水玻璃体积比、缓凝剂掺量(缓凝剂掺量指占超细水泥的重量百分比),以及温度的影响。采用不同的配比条件配制浆液,测试浆液凝胶时间。测试结果见表3-12、3-13、3-14。

表3-12 超细水泥-水玻璃双液浆凝胶时间

备注:1.试验温度为20℃;2.水玻璃浓度为35Be′。

表3-13 水玻璃浓度对浆液凝胶时间影响

备注:1.试验温度为20℃;2.MC∶S=1∶1、W∶MC=1∶1、缓凝剂掺量为1%。

表3-14 温度对浆液凝胶时间影响

备注:W∶MC=1∶1、MC∶S=1∶1、缓凝剂掺量为1%、水玻璃浓度为35Be′。

根据试验数据绘制浆液凝胶时间同超细水泥浆水灰比、水玻璃浓度、超细水泥浆和水玻璃体积比、缓凝剂掺量,以及温度的关系曲线,见图3-15、3-16、3-17、3-18、3-19。

根据图3-15~图3-19可以得出如下结论:

①随着超细水泥浆水灰比的增大,浆液的凝胶时间增长。②随着超细水泥浆和水玻璃体积比的增大,浆液的凝胶时间缩短。③随着缓凝剂掺量的增加,浆液的凝胶时间增长。④水玻璃浓度同浆液凝胶时间成线形增长关系。⑤随着温度的升高,浆液的凝胶时间缩短。一般温度每升高10℃,浆液的凝胶时间缩短1~2倍。

图3-15 水灰比对凝胶时间影响曲线

图3-16 水泥浆与水玻璃体积比对凝胶时间影响曲线

图3-17 缓凝剂掺量对凝胶时间影响曲线

图3-18 水玻璃浓度对凝胶时间影响曲线

图3-19 温度对凝胶时间影响曲线

2)抗压强度。采用不同的超细水泥浆水灰比,超细水泥浆和水玻璃体积比,以及缓凝剂掺量配制浆液,测试浆液结石体抗压强度,测试结果见表3-15。

根据试验数据,绘制浆液抗压强度同超细水泥浆水灰比、超细水泥浆和水玻璃体积比,以及缓凝剂掺量的关系曲线,见图3-20、3-21、3-22。

表3-15 超细水泥-水玻璃双液浆抗压强度

注:1.水玻璃浓度为35Be′;2.试验温度为20℃。

图3-20 水灰比对抗压强度影响曲线

图3-21 水泥浆与水玻璃体积比对抗压强度影响曲线

图3-22 缓凝剂掺量对抗压强度影响曲线

根据图3-20~图3-22可以得出如下结论:

①随着超细水泥浆水灰比增大,浆液抗压强度减小。特别在水灰比为1∶1~2∶1 之间,水灰比对浆液的抗压强度影响极大。当水灰比大于2∶1时,浆液的抗压强度较小,且抗压强度比较接近。

②随着超细水泥浆和水玻璃体积比的增大,浆液抗压强度减小(W∶MC =1∶1 ,缓凝剂掺量1%时除外)。

③随着缓凝剂掺量增加,浆液抗压强度减小。特别在水灰比为1∶1时,浆液抗压强度急剧减小。结合水灰比对抗压强度影响曲线和缓凝剂掺量对抗压强度影响曲线来看,缓凝剂掺量不宜大于2%,否则,对浆液抗压强度损失较大。

3)黏度。采用NDJ-1 型旋转黏度计在室温20℃时测试配比为W∶MC=2∶1、MC∶S=1∶1、缓凝剂掺量1%浆液的黏度。根据测试结果,绘制浆液的凝胶化曲线,见图3-23。

由超细水泥-水玻璃双液浆凝胶化曲线可以看出,浆液初始黏度低,只有1.2cp,浆液在70%时间前黏度大体变化不大,渗透性能较好,在随后的时间里,黏度随时间有明显的突变而产生固结。此种变化曲线对注浆堵水十分有利。

图3-23 超细水泥-水玻璃双液浆凝胶化曲线

4)浆液可注性。模拟注浆条件,采用W∶MC=3∶1、MC∶S=1∶1、水玻璃浓度35Be′、缓凝剂掺量1%的配比进行浆液的可注性试验,注浆压力分别为0.2MPa、0.4MPa、0.5MPa、0.6MPa。注浆结束后开挖观察,浆液在注浆压力为0.2MPa时均匀渗透,渗透距离为3cm;在注浆压力为0.4MPa、0.5MPa、0.6MPa 时产生层流脉状劈裂,渗透距离分别为3.5cm、8cm、15cm。绘制注浆压力和渗透距离关系曲线,如图3-24。

图3-24 注浆压力和渗透距离关系曲线

由注浆压力和渗透距离关系曲线可以看出:在注浆压力为0.4~0.6MPa条件下,产生脉状劈裂扩散,注浆压力和渗透距离成正比。试验结果符合悬浊液渗透理论公式。根据试验结果和理论公式,可以看出:在适当提高注浆压力情况下,浆液扩散能力会得到提高。

(4)浆液优缺点

1)优点。①可注性最好,在粉细砂层中能得到较细的劈裂脉。②凝胶时间可控,可达到控域注浆目的。③早期强度较高,利于注浆后就立即进行开挖施工。

2)缺点。①抗压、抗剪强度较低,易被高压水破坏。②单价较高。

(5)适用范围

适用于动水粉细砂层的注浆堵水及加固。

与建筑工程水泥水玻璃双液注浆技术规程相关的资料

热点内容
苏州假山景观设计工程 浏览:862
哈尔滨工程造价招聘 浏览:937
建筑工程土建劳务分包 浏览:632
道路监理工程师 浏览:476
安徽工程大学机电学院在本校吗 浏览:370
河北工程大学保研率多少 浏览:287
有学质量工程师的书吗 浏览:479
康乐县建筑工程公司 浏览:569
助理工程师二级 浏览:872
注册安全工程师初级考试时间 浏览:901
食品科学与工程专业课题研究 浏览:881
工程造价图纸建模 浏览:888
辽宁恒润建设工程有限公司 浏览:93
实行施工总承包的工程项目 浏览:737
道路桥梁工程技术兴趣爱好 浏览:316
密歇根理工大学电气工程专业 浏览:388
广西交通工程质量监督站 浏览:31
四川大学材料科学与工程学院考研参考书目 浏览:858
有线电视工程建设管理条例 浏览:270
云南工程监理公司排名 浏览:673