⑴ 土木工程学数学建模有意义吗
有。
1、建模真正将所学的数学知识转化为了结局实际问题的能力。
2、建模中会有很多从没有遇到的问题,锻炼了解决新问题的情况。面对一个数天难以解决的问题时,耐心和意志力都会得到锻炼。
3、建模不是一个人能够完成的任务,将会学习团队的分工合作,发现和利用自己所长之处。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,简单和可操作,数据易于采集。
(1)土木工程模型扩展阅读:
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音、录像、比喻、传言等等。
为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
⑵ 建筑模型设计大赛,求一个团队的名称,是土木工程系的,拜托各位啦。
这里提供几个朗朗上口的名称吧,大多都以两个字为主的
起名称的原则是:方便记忆、专业性强、笔画少书写方便
城筑、筑地、境地、城邑、构思、鼎宸、劦力
⑶ 我是学土木工程的,之前一直做工程监理,现在想做建筑模型,就是沙盘,
你做监理多久了?对沙盘感兴趣的话,可以兼职做。现在土木工程这块还是预算比较吃香,建议你年轻阶段不要做监理,去干施工或者设计是比较好的方向。
⑷ 关于土木工程专业的比赛,以及关于结构模型设计大赛的具体介绍
在我们这边,只有一个结构设计大赛比较权威,别的就没有什么了,建筑学的大赛比较多,结构设计大赛时全国性质的,在学校里报名,3——4人一组,可以和不同院系不同级的人一组,我们一般都是和学姐学长一组,让他们带着我们做
⑸ 做土木工程模型
弄来原设计图纸
按照尺寸比例先拼好部件
最后拼装
细心一点
我也没有做过
但我想和搞实体差不多
努力了
祝早日成功
⑹ 土木工程有那些模型
你的问题太模糊,请具体描述
⑺ 推荐个土木工程(道路桥梁)建筑模型的3D软件啊
设计单位 CAD是基础,3D MAX等等 都比较重要,如果是进施工单位就不用了,做多是学下CAD就可以了
⑻ 土木工程建模不严谨是指什么
木工程建模不严谨的意思就是不认真
⑼ 求关于土木工程的数学建模案例
http://wenku..com/view/852928d33186bceb19e8bbf7.html?from=share_qq
数学建模在土木工程土方调配中的应用马南湘)广西建设职业技术学院公共课教学部-广西南宁(+$$$+,摘要"土木工程大型土方工程施工时-可以借助运筹学中的线性规划知识建立数学模型-经过若干运算步骤后最终确定运距最短的土方调配最优方案用以指导施工-以达到降低成本.取得较好经济效益的目的/关键词"线性规划0数学模型0表上作业法0土方调配中图分类号"1#**文献标识码"2土木建筑工程大型土方施工时-为了达到降低工程成本和造价的目的-常常需要在施工前-制订土方调配方案以指导施工-而在现场-许多工程施工人员制订方案往往仅凭一些常识和经验来做抉择/当然-凭经验有时也能得到一个较满意的方案-但当问题较复杂时-单凭经验和常识会遇到极大的困难-而此时借助运筹学的线性规划知识则可以较方便地获得一个目标明确的最优方案/下面笔者结合实例建立数学模型给出用线性规划知识来求土方调配最优方案的特殊方法33表上作业法/实际问题"某大型土方施工场地有4#.4*.4+.4’四个挖方区-5#.5*.5+.5’四个填方区-其相应挖.填方土方量和各对调配区运距如下图#所示-要求确定使得该场地运距最短效益最好的土方调配最优方案/图#调配区运距图图*土方调配图第*6卷增刊*$$+年#$月广西大学学报)自然科学版,789:;<=8>?9<;@ABC;BDE:FBGH)I<GJKBLM,N8=/*6-J9O/1KG/-*$$+!收稿日期"*$$+$P*$0修订日期"*$$+$6*6作者简介"马南湘)#QP(%,-湖南长沙人-广西建设职业技术学院高级讲师.工民建工程师/
!建立数学模型"!#编制土方调配表土方调配表如表!$表中%&’是待求土方调运量$其表示由第&个挖方区调运至第’个填方区的土方量"如%()是*(挖方区调运至+)填方区的土方量#$格内右边的数值是相应调配区的运距,表!土方调配表挖方区填方区+!+(+)+-挖方区".)#*!%!!!/0%!((00%!)!10%!-(-0!0000*(%(!20%((!-0%()!!0%(-!20-000*)%)!!/0%)()(0%))!(0%)-(00-000*-%-!!00%-(!)0%-)10%--!30!000填方区".)#!0002000(0004000!4000"(#建立数学模型目标函数56!/0%!!7(00%!(7!10%!)7(-0%!-720%(!7!-0%((7!!0%()7!20%(-7!/0%)!7((0%)(7!(0%))7(00%)-7!00%-!7!)0%-(710%-)7!30%--要求在满足如下约束条件情况下求出5的最小值,8-’6!%!’6!00008-’6!%(’6-0008-’6!%)’6-0008-’6!%-’9:;6!0008-’6!%!&6!0008-’6!%(&620008-’6!%)&6(0008-’6!%&-9:;64000由所建立的数学模型知$该问题属于一个线性规划问题$它当然可以用单纯形法求解$但该问题若用单纯形法求解$则需对每一个约束方程加一个人工变量而成为求解-7-个约束总共含有-<-7-7-个变量问题$这样的解题工作量相当大,现在我们细心观察一下模型$就会发现该模型很特殊$所有的约束方程都仅仅是各变量之和$即约束方程中各变量的系数不是=!>就是=0>$因而这里可以不引用人工变量$而采用一种较为特殊的表上作业法求解,(编制初始调配方案制订初始方案时$采用优先对运距最小的调配区调配的原则进行$可以使目标函数减少运算次数,"!#由表!知$未知量%(!运距最小$由于*(6-000.)$+!6!000.)$故从*(中调!000.)到+!中即%(!6!000.)$由于?!已得足土方$故@!$@)$@-不再给土方$即A!!6A)!6A-!60$相应的方格中填0,"(#再选一个运距最小的方格调配$在未调配的方格中$A-)的运距最小"10B#$*-6!000.)$+)6(000.)$于是%-)6!000.)$从而A-(6A--60,")#重复以上步骤$每次都对运距最小的方格进行调配$根据供需要求$尽可能满足该方格需要$依次求出其他ACD值$即得初始调配方案如表(
⑽ 土木工程中数学建模
数学建模在土木工程土方调配中的应用马南湘)广西建设职业技术学院公共课教学部-广西南宁(+$$$+,摘要"土木工程大型土方工程施工时-可以借助运筹学中的线性规划知识建立数学模型-经过若干运算步骤后最终确定运距最短的土方调配最优方案用以指导施工-以达到降低成本.取得较好经济效益的目的/关键词"线性规划0数学模型0表上作业法0土方调配中图分类号"1#**文献标识码"2土木建筑工程大型土方施工时-为了达到降低工程成本和造价的目的-常常需要在施工前-制订土方调配方案以指导施工-而在现场-许多工程施工人员制订方案往往仅凭一些常识和经验来做抉择/当然-凭经验有时也能得到一个较满意的方案-但当问题较复杂时-单凭经验和常识会遇到极大的困难-而此时借助运筹学的线性规划知识则可以较方便地获得一个目标明确的最优方案/下面笔者结合实例建立数学模型给出用线性规划知识来求土方调配最优方案的特殊方法33表上作业法/实际问题"某大型土方施工场地有4#.4*.4+.4’四个挖方区-5#.5*.5+.5’四个填方区-其相应挖.填方土方量和各对调配区运距如下图#所示-要求确定使得该场地运距最短效益最好的土方调配最优方案/图#调配区运距图图*土方调配图第*6卷增刊*$$+年#$月广西大学学报)自然科学版,789:9$因而这里可以不引用人工变量$而采用一种较为特殊的表上作业法求解,(编制初始调配方案制订初始方案时$采用优先对运距最小的调配区调配的原则进行$可以使目标函数减少运算次数,"!#由表!知$未知量%(!运距最小$由于*(6-000.)$+!6!000.)$故从*(中调!000.)到+!中即%(!6!000.)$由于?!已得足土方$故@!$@)$@-不再给土方$即A!6A)!6A-!60$相应的方格中填0,"(#再选一个运距最小的方格调配$在未调配的方格中$A-)的运距最小"10B#$*-6!000.)$+)6(000.)$于是%-)6!000.)$从而A-(6A--60,")#重复以上步骤$每次都对运距最小的方格进行调配$根据供需要求$尽可能满足该方格需要$依次求出其他ACD值$即得初始调配方案如表(