Ⅰ 急求一篇8000字的与电子信息工程专业相关的英文文献,要有文献出处
直接去我空间看下载地址,拖拖的
Ⅱ 高分悬赏:急求电子信息专业用于毕业论文的英文文献3000字中文翻译 要求附带英文原文
您可以亲自挑选:
可以用关键词检索或根据专业、杂志名检索。标题前面有个绿色的小方块的文章可以浏览全文。参考资料:http://www.sciencedirect.com/
Ⅲ 英文论文参考文献是什么
留学生在参考文献的列举,或者可以说是陈列方面有比较多的标注方法,常见的有五种:Harvard
referencing
system哈佛文献标记系统;CMS:Chicago
Manual
of
Style(CMS)芝加哥写作和文献标注系统;APA
Style:American
Psychological
Association美国心理学会写作和文献标记办法;AMA:American
Medical
Association美国医学会文献标注系统;MLA:现代语言学会写作和文献标注系统。但是最常用的就是前两种,今天来说一下哈佛文献的注释格式吧!
哈佛文献注释体系起源于美国,经过几十年的发展已经成为一种国际性的学术规范,具备了灵活、简洁、清楚的特点,对作者和读者来说都较为方便。它也叫做作者-日期法,每一个引文,无论是直接还是间接都应该分别在两处注明——在文中引用处注明,在全书或是全文最后的参考书目处注明。
1、在文中引用处注释。当作者姓名在句子中自然出现,给出作者姓和出版年份,将出版年份在小括号内;当作者姓名不在句子中自然出现时,姓和出版年份都放在括号内;被引用的作者在同一年出现了两部以上著作或发表了两篇以上的炉温,用小写字母abc加以区别,放在年份后面;如果被引用著作有两位作者,要讲两位作者的姓同时给出等。
2、在全书(文)后参考书目处注释。所有参考书目以作者姓名的字母顺序排列,一个作者有多本著作时,则按年份先后排列顺序,一个作者一年内有多本著作出版或论文发表,在年份后按月份先后加小写字母abc等加以区别。这样排列的好处是:只有一个按字母顺序排列的参考书目,便于读者查阅;整个文档不需要脚注;便于修改,即使是最后一刻要删去或增加某条注释,可随时增删,不需要重新排序;每个注释只在参考书目中出现一次,而无论它在文中被引用过几次。
Ⅳ 电子专业英语论文
This article described the three directions (before, left, right) ultrasonic ranging system is to understand the front of the robot, left and right environment to provide a movement away from the information. (Similar to GPS Positioning System)
A principle of ultrasonic distance measurement
1, the principle of piezoelectric ultrasonic generator
Piezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown in Figure 1, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two are not inter-electrode voltage, when the board received ultrasonic resonance, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.
2, the principle of ultrasonic distance measurement
Ultrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 2
Ultrasonic Ranging System for the Second Circuit Design
System is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2. Draw only the front range of the circuit wiring diagram, left and right in front of Ranging Ranging circuits and the same circuit, it is omitted.
1,40 kHz ultrasonic pulse generated with the launch
Ranging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following proceres to generate.
puzel: mov 14h, # 12h; ultrasonic firing continued 200ms
here: cpl p1.0; output 40kHz square wave
nop;
nop;
nop;
djnz 14h, here;
ret
Ranging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procere, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.
2, reception and processing of ultrasonic
Used to receive the first launch of the first pair UCM40R, the ultrasonic pulse molation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the output from the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.
Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:
receive1: push psw
push acc
clr ex1; related external interrupt 1
jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuit
jnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routine
return: SETB EX1; open external interrupt 1
pop? acc
pop? psw
reti
right: ...?; right location entrance circuit interrupt service routine
? Ajmp? Return
left: ...; left Ranging entrance circuit interrupt service routine
? Ajmp? Return
4, the calculation of ultrasonic propagation time
When you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:
RECEIVE0: PUSH PSW
PUSH ACC
CLR EX0; related external interrupt 0
? MOV R7, TH0; read the time value
MOV R6, TL0?
CLR C
MOV A, R6
SUBB A, # 0BBH; calculate the time difference
MOV 31H, A; storage results
MOV A, R7
SUBB A, # 3CH
MOV 30H, A?
SETB EX0; open external interrupt 0
POP ACC?
POP PSW
RETI
Fourth, the ultrasonic ranging system software design
Software is divided into two parts, the main program and interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.
Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.
V. CONCLUSIONS
Required measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reprocibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.
Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, CX20106 integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency
Ⅳ 电子工程专业英文期刊有哪些
你可以到佰腾科研导航站里找,里面的收录了国内外权威期刊,非常专业。
Ⅵ 跪求电气专业英文论文或英文参考文献
是这个样子的吗?如有需要回复我
水 泥 科 技
SCI CE jD 佃C )I JC)GY OF CE 任NT
1 概述
一起变压器差动保护误动作的案例分析
孙 峻
(合肥水泥研究设计院 230051)
智利拉法基二十万吨水泥粉磨生产线是我院首
个在美洲地区开展的EP项目,此项目的成败关系
到我院能否开拓美洲市场,是我院实施美洲开发战
略的关键。此项目从开始的设计到设备的选型都是
国内最先进的,技术含量也是最高的。为此我院的工
程技术人员付出了艰辛的汗水,但是现场电气方面
还是出现了一些技术问题。我院工程技术人员非常
重视出现的问题,没有丝毫懈怠,在智利技术人员的
大力配合下和我院的工程技术人员努力下,电气问
题终于得到圆满的解决,受到了业主的好评。
笔者在此仅将智利拉法基现场出现的变压器微
机差动保护误动作问题例举出来,加以技术分析,谨
供大家参考。
2 电气故障的现象
智利拉法基二十万吨水泥粉磨生产线的供电是
采取23/6.6kV& 23/0.4kV两路供电方式,两台主
变的技术参数见表1、表2。
表1 1#主变
变压器型号 S11一ⅣB一3150/23
有载调压 23±2x2.5
变压器接线方式 Dynl1
变压器容量 3150t
电压比 23/6.6kV
表2 2#主变
变压器型号 Sl1一MB一2000/23
有载调压 23±2x2.5
变压器接线方式 Dynl1
变压器容量 2000kI
电压比 23/0.4kV
主变的主保护是微机差动保护(型号:
R圈1543),R 43型号的微机综保是ABB公司近
期新推向世面的一种新型综保,其功能非常强大,自
带运行软件和程序的自主编程,为用户提供了方便。
经过半年的安装于2008年1月20日试投入运行,
两台主变空载运行一切正常。但是当两台主变在带
上负荷生产以后,两台主变高压侧相继出现跳闸现
象,ABB微机综保显示微机差动保护动作,显然这
样将严重影响全厂的生产,这一问题必须尽快得到
解决。
3 故障的检查步骤和技术分析
(1)首先检查高低压侧电流互感器相序是否一
致,在电源的相序是正序的情况下,只要合理的选择
变比以及微机相位补偿,流过差动电流是很小的,而
负序的情况就不一样了,高压侧电流互感器副边输
出的电流和和低压侧电流互感器副边输出的电流相
位相差60。,因此就能引起差动保护误动作,但是经
过现场认真的检查电源的相序是正确的。
(2)检查变压器两端的电流互感器的变比和综
保的保护值是否相匹配以及重新校验且核算保护定
一35 —
2008.N93
水 泥 科 技
SCIENCEAND )IoGY OFC
值,没有发现任何问题。
(3)检查电流互感器二次侧是否断线,原因是
在变压器有一定负荷时,若电流互感器二次回路断
线,将可能造成差动保护起动元件、差动元件动作,
从而引起差动保护误动作。检查结果是没有发现上
述的问题。
(4)接着,所有的技术人员开始怀疑变压器内
部是否有故障,经过对两台主变的性能测试和出厂
值的校验,检测的数据和变压器出厂时几乎一样。
(5)根据ABB(RKI'543)的微机综保技术资料,
检查ABB(R踊43)的微机综保的接线端子(变压器
两侧电流互感器接到综保的电流接线端子位置是否
正确),发现变压器两侧电流互感器与综保接线有
误,厂家把变压器高压侧的电流互感器和低压侧的
电流互感器的电流信号接到综保的位置接反了,在
接线调整正确以后,发现差动保护跳闸的现象依然
存在。
此时,现场的问题显得扑朔迷离,但是中智双方
工程技术人员没有泄气,看图纸、查资料,终于找到
了问题的痼疾。原来是互感器的二次侧同极性端子
接错导致差动保护误动作,因为这样的接线方式会
导致两侧电流互感器的二次电流在差动回路中方向
相同,微机综保流过的电流为两相电流之和,在变压
器空载运行时故障一般不容易反映不出来,只有当
变压器带上一定负荷时,差动保护就会动作。重新接
线后两台变压器带负荷运行一切正常。
图1
这样,在双方技术人员的艰苦努力下,这一起变
一36 一
压器差动保护误动作终于水落石出,故障得到了圆
满的解决,而萦绕在工程技术人员心头久久不能散
去的迷雾也渐渐消融,化作工程圆满完成的一场喜
雨。图1是差动保护的正确和错误的接线。
4 体会与建议
4.1 故障的分析与排除
通过对差动保护误动作故障的分析和故障排除
整个过程,阐述了一些正常运行时(系统无故障及无
冲击)差动保护误动作的原因,但是除了上述的原因
还有一些因素也可能导致变压器正常运行时差动保
护误动作,主要现象为:(1)电流互感器二次回路中
接线端子螺丝松动,使二次回路连线接触不良或短
时开路。(2)电流互感器二次回路中一相接触不良,
在接触不良处产生电弧造成单相接地或两相之间的
接地(电流互感器二次回路短路)。(3)电流互感器
二次回路电缆芯线外层绝缘损坏或损伤,在运行中
由于震动造成接地短路。(4)差动电流互感器二次
回路多点接地,而且接地点不在同一处,造成接地点
之间电位差太大,使差动元件产生差流导致差动误
动作(雷雨季节较多)。
4.2 建议
为了提高差动保护的动作可靠性应做好以下工
作:(1)严格检查电流互感器的极性;如果电流互感
器极性在接线时接错了,那么将它用在保护回路中,
将会引起保护的误动作,如果用在仪表测量回路中,
会影响计量的准确性。(2)严防电流互感器二次回
路接触不良和开路的现象;加强对差动回路差流运
行监视以及对保护装置的维护。在变压器和保护装
置安装调试以后,应仔细的检查电流互感器二次回
路,拧紧二次回路接线端子螺丝并且用弹簧垫进行
加固。(3)严格执行规范要求;所有电气上有连接的
差动电流互感器二次回路只能有一个公共接地点,
并且该接地点位置应在保护盘上。(4)确保差动电
流互感器二次电缆芯线之间和各芯线对地绝缘;对
于变压器初次运行和高压设备检修后的运行,要用
1000V绝缘电阻表测量电流互感器二次电缆芯线之
间和各芯线对地绝缘,使之符合电气规程的要求;另
外选择电流互感器二次电缆的截面应不小于4mm 。
Ⅶ 电子类英语论文
A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems要该文全文,更换别的论文,或要中英文对照都可以找我Mahim Ranjan, Member, IEEE, and Lawrence E. Larson, Fellow, IEEE0Abstract—This paper presents an RF receiver front-end for MB-OFDM-based ultra-wideband (UWB) systems. The receiver occupies only 0.35 in a 0.18 CMOS process and consists of a low-noise amplifier, downconverter and a bandpass filter. There are no on-chip inctors and the receiver requires no off-chip matching components. The measured receiver gain is 21 dB, noise figure is less than 6.6 dB, input IIP3 is 5.6 dBm, and the receiver consumes 19.5 mA from a 2.3 V supply. The receivercovers all the MB-OFDM bands from 3.1 to 8 GHz.Index Terms—CMOS, distortion, OFDM, receiver, ultra wideband, UWB.I. INTRODUCTIONULTRA-WIDEBAND (UWB)multi-band orthogonal frequency-division multiplexing (MB-OFDM) systems have been proposed as an emerging solution to wireless communicationapplications requiring high data rates (up to 480 Mb/s) over short distances. In one proposed version [1], the carrier, with a bandwidth of 528 MHz, can hop to one of 14 channels(2904+528n,n=123…14), divided into four groups of three channels and one group of two channels. This representative time-frequency interleaving for a Group 1-only systemis depicted in Fig. 1. Design of a receiver for such a systempresents many challenges e to the wide bandwidth of the RF front-end. However, to assure the widest possible adoption, RF portions of these systems should consume little DC power and die area, and be implemented in a standard CMOS process. These last requirements argue against the use of on-chip inctors wherever possible.Since theUWBfront-end intrinsically possesses a wide bandwidth, it is open to reception of undesired narrowband signals such as 802.11 a/b/g and the recently proposedWiMAX [2] systems, as shown in Fig. 2. Although OFDM systems are less susceptible to relatively narrowband jammers, nonlinearities in the receiver can result in jammer cross-molation with wideband input signals, resulting in reced signal-to-noise ratio (SNR) and a degradation in system performance [3]. In addition, received wideband signals (from other UWB transmitters) can intermolate and the resulting procts can land in a desired channel. Since the system is inherently wideband, harmonic distortion of a single unwanted UWB transmitter can also proce in-band distortion procts and rece the SNR. For the system to successfully operate in such a hostile environment, the linearity specifications of the receiver need to include these distortion effects. Fig. 1. Representative time-frequency interleaving pattern of a Group 1MB-OFDM signal [1]. Fig. 2. Representative spectrum at an MB-OFDM receiver antenna.This paper describes a UWB heterodyne receiver front-end that is designed to minimize the effects of wideband jammers from a variety of undesired sources [4]. In addition, the receiver is designed to minimize silicon area, so on-chip inctors are not employed. The receiver architecture is presented in Section II. Specifications for the receiver are derived in Section III. Detailed block design is presented in Sections IV–VI. Layout and packaging of the chip is discussed in Section VII. Measured results are presented in Section VIII, followed by a conclusion in Section IX.II. RECEIVER ARCHITECTUREWhen it comes to designing a low-power and low-cost receiver, the traditional choice is a direct conversion architecture. However, a direct conversion UWBreceiver, while attractive for power consumption and simplicity of its local oscillator (LO) scheme [5], [6], has a well-known problem of time-varying DC offset and sensitivity to narrowband jammers. A DC offset at the output of the receiver can degrade the SNR of the digitized baseband signal. In addition, it can introce second-order distortion in the baseband signal, which further degrades the SNR. A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband SystemsMahim Ranjan, Member, IEEE, and Lawrence E. Larson, Fellow, IEEE0Abstract—This paper presents an RF receiver front-end for MB-OFDM-based ultra-wideband (UWB) systems. The receiver occupies only 0.35 in a 0.18 CMOS process and consists of a low-noise amplifier, downconverter and a bandpass filter. There are no on-chip inctors and the receiver requires no off-chip matching components. The measured receiver gain is 21 dB, noise figure is less than 6.6 dB, input IIP3 is 5.6 dBm, and the receiver consumes 19.5 mA from a 2.3 V supply. The receivercovers all the MB-OFDM bands from 3.1 to 8 GHz.Index Terms—CMOS, distortion, OFDM, receiver, ultra wideband, UWB.I. INTRODUCTIONULTRA-WIDEBAND (UWB)multi-band orthogonal frequency-division multiplexing (MB-OFDM) systems have been proposed as an emerging solution to wireless communicationapplications requiring high data rates (up to 480 Mb/s) over short distances. In one proposed version [1], the carrier, with a bandwidth of 528 MHz, can hop to one of 14 channels(2904+528n,n=123…14), divided into four groups of three channels and one group of two channels. This representative time-frequency interleaving for a Group 1-only systemis depicted in Fig. 1. Design of a receiver for such a systempresents many challenges e to the wide bandwidth of the RF front-end. However, to assure the widest possible adoption, RF portions of these systems should consume little DC power and die area, and be implemented in a standard CMOS process. These last requirements argue against the use of on-chip inctors wherever possible.Since theUWBfront-end intrinsically possesses a wide bandwidth, it is open to reception of undesired narrowband signals such as 802.11 a/b/g and the recently proposedWiMAX [2] systems, as shown in Fig. 2. Although OFDM systems are less susceptible to relatively narrowband jammers, nonlinearities in the receiver can result in jammer cross-molation with wideband input signals, resulting in reced signal-to-noise ratio (SNR) and a degradation in system performance [3]. In addition, received wideband signals (from other UWB transmitters) can intermolate and the resulting procts can land in a desired channel. Since the system is inherently wideband, harmonic distortion of a single unwanted UWB transmitter can also proce in-band distortion procts and rece the SNR. For the system to successfully operate in such a hostile environment, the linearity specifications of the receiver need to include these distortion effects. .........................
Ⅷ 哪里可以找到有关电子信息类的英语论文
1、到学校的图书馆,找到相关书籍,应该有前言或者介绍,如果有英汉对应的话 就如你所愿了
2、从学校入口进中国学术期刊全文数据库(这样可免费),在里面搜索相关论文,论文后面肯定有英文参考文献,你就按上面提供的名称找吧~~
3、把“基于单片机控制的直流恒流源的设计”翻译成英文,然后在http://scholar.google.com/schhp?hl=en&tab=ws 尽情的找吧
4、求助你的指导老师,他知道你的论文嘛,肯定有这方面的资料的
如果可以的话,晚上我帮你找找~~现在么资源利用~~呵
Ⅸ 跪求模电方面的英文参考文献,书目名称
《Design with Operational Amplifiers and Analog Integrated Circuits》作者,Franco博士。
《模拟电子技术基础》
(美国)托马斯 L.弗洛伊德(Thomas L.Floyd) (美国)大卫 M.布奇拉(David M.Buchla)
《模拟集成电路的分析与设计》
作者:(美)格雷(Gray,P.R.)
《模拟集成电路设计精粹(配光盘)(清华版双语教学用书)》
作者:(美)桑森(Sansen,W.M.C.)
《集成微电子器件(英文版)》
作 译 者:(美)吉泽斯·A. 德尔阿拉莫
《模拟CMOS集成电路设计(英文版》
作者: (美)Behzad Razavi
《电子电路分析与设计——模拟电子技术》
作者,美国的纽曼
还有好多优秀的外文教材资料,在这里就列这几个。推荐看纯英的,这样会比较好的提升自己。
Ⅹ 求电气工程论文英文参考文献三篇 我已写好一篇论文 学校要求要有三篇英文参考文献 我的只有中文的
一种方式是上谷歌找,因为不知道你的论文,我找不到,也看不懂
二是到图书馆的外文数据库中找
三是通过中文文献的参考文献上找