导航:首页 > 工程专业 > 土木工程外文文献

土木工程外文文献

发布时间:2021-08-14 23:32:34

A. 求一篇关于土木工程的外文翻译或者文献。

土木工程的外文翻译或者文献外文文献有,翻译没有,翻译得靠你自己了,如果需要直接网络Hi中留言同时贴出问题的链接地址和邮箱地址即可,希望能满足你的需要,能帮到你,并请及时知道评价,多多给点悬赏分吧,急用的话请多选赏点分吧,这样更多的知友才会及时帮到你,我找到也是很花时间的,并请及时采纳

B. 土木工程的外文 文献数据库

万方数据库,知网,你是大学生吧,学校的图书管理一般都有外文期刊杂志之类的。那两个地方只能用校园网上,(其他地方收费)。by 土木男

C. 求一篇土木工程毕业设计外文文献(中英文对照)

已发到你邮箱,请查收

D. 求一份土木工程外文文献最好带中文翻译的

我有一篇斜拉桥静载试验的行吗,6000多汉字,行的话你就回复一下,我发给你!

我的发给你了,希望能对你有用

E. 跪求一份土木工程外文文献最好带有翻译

外刊文献,实在没有就关于土木工程的就好,注明出处。求各位大神

F. 土木工程英文科技文献

SCC formwork pressure: Influence of steel rebars
Abstract
The formwork pressure exerted by a given Self Compacting Concrete (SCC) depends on its thixotropic behavior, on the casting rate and on the shape of the formwork. It can moreover be expected that, in the case of a formwork containing steel rebars, these should also play a role. In first part, the specific case of a cylindrical formwork containing a single cylindrical steel rebar is studied. In second part, a comparison of the theoretical predictions to the experimental measurements of the pressure drop, after the end of casting SCC, was determined and the proposed model was validated. Finally, an extrapolation is suggested of the proposed method to the case of a rectangular formwork containing a given horizontal section of steel rebars, which could allow the prediction of the formwork pressure ring casting.

Keywords: Fresh concrete; Rheology; Workability; Formwork presure; Thixotropy

1. Introction
In most of the current building codes or technical recommendations [1], [2], [3] and [4], the main parameters affecting formwork pressure ring casting are the density of concrete, the formwork dimensions, the pouring rate of concrete, the temperature, and the type of binder.

However, it was recently demonstrated that, in the case of SCC, the thixotropic behaviour of the material played a major role [5] P. Billberg, Form pressure generated by self-compacting concrete, Proceedings of the 3rd International RILEM Symposium on Self-compacting Concrete, RILEM PRO33 Reykjavik, Iceland (2003), pp. 271–280.[5], [6], [7] and [8]. It can be noted that this influence is in fact indirectly taken into account in the above empirical technical recommendations via the effect of temperature and type of the binder, which are both strongly linked to the ability of the material to build up a structure at rest [9], [10] and [11].

During placing, the material indeed behaves as a fluid but, if is cast slowly enough or if at rest, it builds up an internal structure and has the ability to withstand the load from concrete cast above it without increasing the lateral stress against the formwork. It was demonstrated in [7] and [8] that, for a SCC confined in a formwork and only submitted to gravity forces, the lateral stress (also called pressure) at the walls may be less than the hydrostatic pressure as some shear stress τwall is supported by the walls. It was also demonstrated that this shear stress reached the value of the yield stress, which itself increased with time because of thixotropy. Finally, if there is no sliding at the interface between the material and the formwork [8], the yield stress (not less or not more) is fully mobilized at the wall and a fraction of the material weight is supported (vertically) by the formwork. The pressure exerted by the material on the walls is then lower than the value of the hydrostatic pressure.

Based on these results, the model proposed by Ovarlez and Roussel [7] predicts a relative lateral pressure σ′ (i.e. ratio between pressure and hydrostatic pressure) at the bottom of the formwork and at the end of casting equal to:

(1)and a pressure drop Δσ′(t) after casting equal to:

(2)where H is the height of concrete in the formwork in m, Athix the structuration rate in Pa/s [10], R is the casting rate in m/s, e is the width of the formwork in m, g is gravity, t is the time after the end of casting and ρ is the density of the concrete.

As it can be seen from the above, the key point for the pressure decrease is that the shear stress on each vertical boundary of the formwork equals the static yield stress of the material. It can then be expected that, in the case of a formwork containing steel rebars, the stress at the surface of the rebars should also play a role. It is the objective of this paper to start from the model developed by Ovarlez and Roussel [7] and extend it to the case of reinforced formworks. As the steel rebars should have a positive effect on formwork design (i.e. decreasing the formwork pressure), this could allow for a further rection of the formwork size.

In first part, the specific case of a cylindrical formwork containing a single cylindrical steel rebar is studied. In second part, a comparison of the theoretical predictions to the experimental measurements of the pressure drop, after the end of casting SCC, is determined and the proposed model is validated. Finally, an extrapolation is suggested of the proposed method to the case of a rectangular formwork containing a given horizontal section of steel rebars, which could allow the prediction of the formwork pressure ring casting.

2. Influence of a vertical steel bar on the pressure decrease inside a cylindrical formwork
In this paper, SCC is considered as a yield stress material (in first step, thixotropy is neglected), and, for stresses below the yield stress, SCC behaves as an elastic material [7]. In the following, cylindrical coordinates are used with r in the radius direction; the vertical direction z is oriented downwards (see Fig. 1). The top surface (upper limit of the formwork) is the plane z = 0; the formwork walls are at r = R. The bottom of the formwork is located at z = H. An elastic medium of density ρ is confined between the cylindrical formwork and an internal cylindrical steel rebar defined by the boundary (r = rb). For the boundary condition, the Tresca conditions are imposed everywhere at the walls (i.e. it is assumed that the shear stress at the walls is equal to the yield stress τ00 as argued by Ovarlez and Roussel [7] and demonstrated in [8]). In order to compute the mean vertical stress σzz(z) in the formwork, the static equilibrium equation projected on the z axis on an horizontal slice of material confined between two coaxial rigid cylinders can be written:
3.2. Evaluation of the structuration rate of SCC at rest
3.2.1. The vane test
The yield stress of the studied SCC was measured using a concrete rheometer equipped with a vane tool. The vane geometry used in this study consisted of four 10 mm thick blades around a cylindrical shaft of 120 mm diameter. The blade height was 60 mm and the vane diameter was 250 mm. The gap between the rotating tool and the external cylinder was equal to 90 mm which is sufficiently large to avoid any scaling effect e to the size of the gravel (Dmax = 10 mm here).

Tests were performed for four different resting times after mixing on different samples from the same batch. Of course, working with the same batch does not allow for the distinction between the non-reversible evolution of the behavior e to the hydration of the cement particles and the reversible evolution of the behavior e to thixotropy [9] and [10]. It can however be noted that the final age of the studied system (i.e. from the beginning of the mixing step to the last vane test measurement) was of the order of 70 min. Although Jarny et al. [13] have recently shown, using MRI velocimetry, that a period of around 30 min exists, for which irreversible effects have not yet become significant compared to reversible ones, the final age of the system in the present study was over this period. However, no strong stiffening nor softening of the sample was visually spotted nor measured as it will be shown later. Finally, the data analysis proposed by Estellé et al. [14] was used for the yield stress calculation.

3.2.2. The plate test
The plate test appears to be a very convenient method to monitor the apparent yield stress evolution of a thixotropic material with time. It was first developed and used in [8] but more details about its application to other materials than cement can be found in [15].

The device is composed of a plate rigidly attached below a balance. The plate is lowered into a vessel containing the SCC (cf. Fig. 2). The apparent mass of the plate is continuously monitored versus time by recording the balance output with a computer. The balance measurements have an uncertainty of ± 0.01 g. The vessel was made of smooth PVC and was cylindrical with a diameter of 200 mm and 200 mm in height. The plate was placed along the cylinder axis. During the tests, the vessel was filled with material to a height of 200 mm. The plate used was 3 mm thick, 75 mm wide and 100 mm long. It was covered with sand paper with an average roughness of 200 µm. The sand paper was used to avoid any slippage between the material and the plate [8]. The distance between the plate and the vessel walls was large enough compared to the size of the constitutive particles that the material can be considered as homogeneous [16] and [17]. The height H of the immersed portion of the plate was measured before the start of the test. To ensure that all tests start with the suspension in similar condition, vibration was applied (frequency of 50 Hz, amplitude of 5 mm) for 30 s. This step is critical in order to ensure tests reprocibility. Variations between tests performed on the same material in the same experimental conditions were then less than 5%.

--------------------------------------------------------------------------------

Full-size image (22K)

Fig. 2. Schematic of the plate test.

View Within Article

The plate test analysis is based on the fact that the slight deformation of the cement paste under its own weight allows for the transfer of a part of this weight to the plate by the mobilization of a shear stress on the plate. This shear stress is equal to the maximum value physically acceptable, which is the yield stress (more details were given in [8], [15], [16] and [17]). The variation in apparent yield stress with time can then be calculated from the measured apparent mass evolution of the plate with time using the following relation:

(9)Δτ0(t)=gΔM(t)/2Swhere ΔM(t) is the measured variation in the apparent mass of the plate and S is the immerged surface.

3.2.3. Laboratory cylindrical formworks
Two columns were simultaneously filled with the studied SCC. The columns were made of the same PVC covered with the same sand paper as the plate test. The columns inner diameters were equal to 100 mm. Each column was 1300 mm high. The thickness of the plastic wall was 5.3 mm. A 25 mm diameter steel bar was introced in the second column (Fig. 3).

G. 土木工程类得外文文献在哪里找

推荐到OA图书馆进行下载,输入英文关键词即可。

H. 跪求土木工程外文文献最好有翻译,3000字左右,谢谢各位大哥大姐了!!!

土木工程范围太广了。。。你说了和没说一样,可以自己去找以前同济大学的英文教材《土木工程概论》或者《土木工程专业英语》,上面有简介土木工程的概述性文章。

I. 土木工程外文文献

刚好我也在做毕业设计 把我的给你用吧!

Traditional Construction Proceres
As mentioned before, construction under the traditional construction procere is performed by contractors. While they would like to satisfy the owner and the building designers, contractors have the main objective of making a profit. Hence, their initial task is to prepare a bid price based on an accurate estimate of construction costs. This requires development of a concept for performance of the work and a construction time schele. After a contract has been awarded, contractors must furnish and pay for all materials, equipment, power, labor, and supervision required for construction. The owner compensates the contractors for construction costs and services.
A general contractor assumes overall responsibility for construction of a building. The contractor engages subcontractors who take responsibility for the work of the various trades required for construction. For example, a plumbing contractor installs the plumbing, an electrical contractor installs the electrical system, and an elevator contractor installs elevators. Their contracts are with the general contractor, and they are paid by the general contractor.
Sometimes, in addition to a general contractor, the owner contracts separately with specialty contractors, such as electrical and mechanical contractors, who perform a substantial amount of the work require for a building. Such contractors are called prime contractors. Their work is scheled and coordinated by the general contractor, but they are paid directly by the owner.
Sometimes also, the owner may use the design-build method and award a contract to an organization for both the design and construction of a building. Such organizations are called design-build contractors. One variation of this type of contract is employed by developers of groups of one-family homes or low-rise apartment buildings. The homebuilder designs and constructs the dwellings, but the design is substantially completed before owners purchase the homes.
Administration of the construction procere often is difficult. Consequently, some owners seek assistance from an expert, called a professional construction manager, with extensive construction experience, who receives a fee. The construction manager negotiates with general contractors and helps select one to construct the building. Managers usually also supervise selection of subcontractors. During construction, they help control costs, expedite equipment and material deliveries, and keep the work on schele. In some cases, instead, the owner may prefer o engage a construction program manager, to assist in administrating both design and construction.
Construction contractors employ labor that may or may not be unionized. Unionized craftspeople are members of unions that are organized by construction trades, such as carpenter, plumber, and electrician unions, Union members will perform only the work assigned to their trade.
During construction, all work should be inspected. For this purpose, the owner, often through the architect and consultants, engages inspectors. The field inspectors may be placed under the control of an owner’s representative, who may be titled clerk of the works, architect’s superintendent, engineer’s superintendent, or resident engineer. The inspectors have the responsibility of ensuring that construction meets the requirements of the contract documents and is performed under safe conditions. Such inspections may be made at frequent intervals.
In addition, inspections also are made by representatives of one or more governmental agencies. They have the responsibility of ensuring that construction meets legal requirements and have little or no concern with detailed conformance with the contract documents. Such legal inspections are made periodically or at the end of certain stages of construction. One agency that will make frequent inspections is the local or state building department, whichever has jurisdiction. The purpose of these inspections is to ensure conformance with the local or state building code.
Following is a description of the basic traditional construction procere for a multistory building.
After the award of a construction contract to a general contractor, the owner may ask the contractor to start a portion of the work before signing of the contract by giving the contractor a letter of intent or after signing of the contract by issuing a written notice to proceed. The contractor then obtains construction permits, as required, form governmental agencies, such as the local building, water, sewer, and highway departments.
The general contractor plans and scheles construction operations in detail and mobilizes equipment and personnel for the project. Subcontractors are notified of the contract award and issued letters of intent or awarded subcontracts, then are given, at appropriate times, notices to proceed.
Before construction starts, the general contractor orders a survey to be made of adjacent structures and terrain, both for the record and to become knowledgeable of local conditions. A survey is then made to lay out construction.
Field offices for the contractor are erected on or near the site. If desirable for safety reasons to protect passersby, the required to be removed from the site are demolished and the debris is carted away.
Next, the site is prepared to receive the building. This work may involve grading the top surface to bring it to the proper elevations, excavating to required depths for basement and foundations, and shifting of utility piping. For deep excavations, earth sides are braced and the bottom is drained.
Major construction starts with the placement of foundations, on which the building rests. This is followed by the erection of load-bearing walls and structural framing. Depending on the height of the building, ladders, stairs, or elevators may be installed to enable construction personnel to travel from floor to floor eventually to the roof. Also, hoists may be installed to lift materials to upper levels. If needed, temporary flooring may be placed for use of personnel.
As the building rises, pipes, cts, and electric conit and wiring are installed. Then, permanent floors, exterior walls, and windows are constructed. At the appropriate time, permanent elevators are installed. If required, fireproofing is placed for steel framing. Next, fixed partitions are built and the roof and its covering are put is place,
Finishing operations follow. There include installation of the following: ceilings; tile; wallboard; wall paneling; plumbing fixtures; heating furnaces; air-conditioning equipment; heating and cooling devices for rooms; escalators; floor coverings; window glass; movable partitions; doors; finishing hardware; electrical equipment and apparatus, including lighting fixtures, switches, transformers, and controls; and other items called for in the drawings and specifications. Field offices, fences, bridges, and other temporary construction must be removed from the site. Utilities, such as gas, electricity, and water, are hooked up to the building. The sit is landscaped and paved. Finally, the building interior is painted and cleaned.
The owner’s representatives then give the building a final inspection. If they find that the structure conforms with the contract documents, the owner accepts the project and gives the general contractor final payment on issuance by the building department of a certificate of occupancy, which indicates that the completed building meets building-code requirements.

传统的施工程序
众所周知,在传统的施工程序中进行施工的承包商。尽管他们想满足业主和建筑设计师的要求,但是最终还是以赚取利润为主要目标的。因此,他们最初的任务是对编写投标价格的建筑成本进行准确的估计。这就需要进行前期调查的工作并且做出施工时间表。等合约批出后,施工方必须提供所有材料并支付其费用,设备,电力,劳动力。业主此时需要进行必要的监督。
一个总承包商承担一个建筑整体的责任。从事分包的承建商则需承担建造工程所需的各个工作。例如,管道承包商安装水管,电业承办商安装电气系统,电梯则由电梯承包商安装。他们与总承包商签订合同,费用由总承包商支付。
有时候,除了一个总承包商,还有各种专业承包商,如电气和机械承包商,执行工作时需要与业主签订合同。这种承包商被称为间接承包商。他们的工作,由总承包商协调,但它们都是由业主直接联系。
还有些时候,业主可以使用设计建造方法同时兼有设计和建筑施工单位的职能。这些单位被称为设计建造承包商。这方面的一个类型的合同聘用的变化是由一户住宅或低层住宅建筑群的开发。在房屋建筑设计和建造的住房,但设计之前需要由购买房屋的业主完成。
施工过程管理往往是困难的。因此,一些业主会去寻求专家的协助,这些专家被称为专业施工经理,他们具有丰富的施工经验。施工经理与总承包商进行谈判,并选择其中一个项目。施工经理通常还监督分包商。在施工期间,它们有助于控制成本,加快运送设备和材料,并保持工作的进度。在依法行政,协助设计和建设的情况下,业主可以选择从事建筑项目经理。
建筑承包商雇用的劳动力,一般有大工和小工。大工再建筑工程中从事技术活,如木工,管道工,工会成员和电工工会,小工则执行了分配给他们的工作。
在施工期间,一切工作都要验收。因此,业主通过建筑师和监理经常进行督查。可能是名为工程员,建筑师或驻地工程师。作为业主的代表实地视察。核查人员必须确保工程符合合同文件的要求,并在安全的条件下进行的责任。这种检查可作出重复。
此外,验收还是需要一个或多个政府机构的代表。他们必须确保工程符合法律要求,并负责检查与合同文件是否一致。这种视察一般定期或在某些阶段施工结束以后进行。地方或国家建设部门具有管辖权。这些检查的目的是确保符合当地或国家的建筑规范。
以下是传统多层建筑施工的基本程序。
建造开始后合同授予开发商,业主可要求开发商开始施工之前签约给或之后签约发出书面通知的同时另一部分工作继续进行。紧接着施工方根据需要获取建筑许可证,例如当地的建设,供水,污水处理,政府机构和公路部门。
总承包商的计划和进度详细施工作业以及动员项目设备和人员。分包商得到通知后,做出签订合同的意向或授予分包合同书,然后给出在适当的时候进行通知。
在施工前启动,总承包商要进行的一项调查就是邻近结构和地形,这些都要记录在案,并要熟悉当地情况。这项调查结束以后,随即进行布局建设。
承建商的现场办事处都建在施工现场或附近。为了安全起见,必须从脚手架上移除的东西,产生的碎片都要运走。
下一步,该网架是为建设工程准备的。这项工作为地下室开挖和基础开挖的深度,以及公用事业管道转移找到正确的标高。深挖掘,土方支撑,底部排出。
建筑开始于基础上,然后是承重墙和结构框架的施工。梯子,楼梯,或电梯的安装,可让施工人员往返于各个楼层。此外,可安装卷扬机来运送材料。
由于建筑高度的上升,管道,电力管道和线路安装以及永久地板,外墙,窗户和构造的影响。在适当的时候,永久的电梯安装。再需要的情况下可以安装防火卷帘。其次,屋顶等地方也需要安装。
精加工工序安装有包括以下内容:天花板,瓷砖,墙板,墙壁镶板,水管装置,加热炉,空气调节设备,加热和冷却室装置;自动扶梯;地板,窗户玻璃;活动板,门;电气设备和仪器,包括照明灯具,开关,变压器,控制器,遵照项目的图纸和规格。外地办事处,围栏,桥梁和其他临时建筑,公共设备,如天然气,电力管道,水管,都连接到建筑上。最后,是建筑物内部的打扫和清洗。
业主的代表,会给建设工程作最后检查。如果他们满意并认为符合合同文件,那么业主接受该项目,并交给总承包商的一个占用证书,这表明,总承包商已完成建设,建设部门再根据建筑规范的要求发放最后付款。
请采纳。

与土木工程外文文献相关的资料

热点内容
苏州假山景观设计工程 浏览:862
哈尔滨工程造价招聘 浏览:937
建筑工程土建劳务分包 浏览:632
道路监理工程师 浏览:476
安徽工程大学机电学院在本校吗 浏览:370
河北工程大学保研率多少 浏览:287
有学质量工程师的书吗 浏览:479
康乐县建筑工程公司 浏览:569
助理工程师二级 浏览:872
注册安全工程师初级考试时间 浏览:901
食品科学与工程专业课题研究 浏览:881
工程造价图纸建模 浏览:888
辽宁恒润建设工程有限公司 浏览:93
实行施工总承包的工程项目 浏览:737
道路桥梁工程技术兴趣爱好 浏览:316
密歇根理工大学电气工程专业 浏览:388
广西交通工程质量监督站 浏览:31
四川大学材料科学与工程学院考研参考书目 浏览:858
有线电视工程建设管理条例 浏览:270
云南工程监理公司排名 浏览:673