❶ 软件工程知识体系图的内容 两条主线
发展的两条主线:一条是形式化技术,一条是工程化技术。
学习的两条主线:软件工程的学习是以技术和管理两条主线展开,围绕一个软件过程即需求、分析、设计、构造、测试,以软件建模为核心,以规范化程序设计为基础,最终达到指导软件开发全过程、实现项目成功的最终目标。
❷ it画软件工程分层图用什么工具
visio应该可以吧
❸ 软件工程中软件结构图和层次图的异同
两者之间没有区别。两者指的均是软件构架,为软件系统的草图。
软件工程中软件结构图和层次图均是为了反映软件系统中组件之间相互关系和约束的体系结构设计图,属于一系列相关的抽象模式,用于指导大型软件系统各个方面的设计。
软件结构图(又被叫做软件构架)一般通过分层次或分时间段等方式说明体系结构的各个组成部分的组合关系。描述的对象是直接构成系统的抽象组件,各个组件之间的连接则明确和相对细致地描述组件之间的通讯关系。
(3)软件工程分层技术图扩展阅读:
其他介绍:
软件结构图包括架构元件、联结器、任务流。所谓架构元素,也就是组成系统的核心砖瓦,而联结器则描述这些元件之间通讯的路径、通讯的机制、通讯的预期结果,任务流则描述系统如何使用这些元件和联结器完成某一项需求。
通过一个软件结构图建造一个系统所作出的最高层次的、以后难以更改的,商业的和技术的决定。在建造一个系统之前会有很多的重要决定需要事先作出,而一旦系统开始进行详细设计甚至建造,这些决定就很难更改甚至无法更改。显然,这样的决定必定是有关系统设计成败的最重要决定,必须经过非常慎重的研究和考察。
❹ 软件工程层次化结构分几层
一计划时期
1.问题定义(要解决的问题是什么?)
2.可行性研究(对于问题有解决方法吗?)
二开发时期
1.需求分析(为了解决问题,目标系统必须做什么?)
2.概要设计(怎样实现目标系统?)
3.详细设计(怎样具体实现这个系统?)
4.编码
5.测试
三运行时期
运行时期的主要工作是维护
❺ 《软件工程导论》一书中,数据流图和层次图的联系是什么
数据流图是需求分析阶段得到的结果。
层次图是总体设计阶段得到的结果,用于描述软件结构。
层次图是对数据流图进一步分析得来的。
❻ 软件工程中的cmm是什么,有哪五个层次
CMM是指“能力成熟度模型”,其英文全称为Capability Maturity Model for Software,英文缩写为SW-CMM,简称CMM。它是对于软件组织在定义、实施、度量、控制和改善其软件过程的实践中各个发展阶段的描述。CMM的核心是把软件开发视为一个过程,并根据这一原则对软件开发和维护进行过程监控和研究,以使其更加科学化、标准化、使企业能够更好地实现商业目标。
CMM是是一种用于评价软件承包能力并帮助其改善软件质量的方法,侧重于软件开发过程的管理及工程能力的提高与评估。CMM分为五个等级:一级为初始级,二级为可重复级,三级为已定义级,四级为已管理级,五级为优化级。
CMM是由美国卡内基梅隆大学软件工程研究所1987年研制成功的,是目前国际上最流行最实用的软件生产过程标准和软件企业成熟度等级认证标准。目前,我国已有软件企业通过了CMM标准认证 。
SW-CMM(Capability Maturity Model For Software 软件生产能力成熟度模型,以下简称"CMM"),是87年由美国卡内基梅隆大学软件工程研究所(CMU SEI)研究出的一种一种用于评价软件承包商能力并帮助改善软件质量的方法,其目的是帮助软件企业对软件工程过程进行管理和改进,增强开发与改进能力,从而能按时地、不超预算地开发出高质量的软件。
其所依据的想法是:只要集中精力持续努力去建立有效的软件工程过程的基础结构,不断进行管理的实践和过程的改进,就可以克服软件生产中的困难。CMM它是目前国际上最流行、最实用的一种软件生产过程标准,已经得到了众多国家以及国际软件产业界的认可,成为当今企业从事规模软件生产不可缺少的一项内容。
CMM目前通用流行的版本是1.1(Version1.1)。《按照软件工程研究所(SEI)的原来计划,CMM的改进版版本2.0(V2.0)是要在1997年的11月完成的。但是,美国国防部办公室要求软件工程研究所(SEI)延迟发放公布CMM版本2.0,直至他们完成另一个更为紧迫的项目-CMMI。
CMMI(Capability Maturity Model Integration能力成熟度模型集成),是美国国防部的一个设想。他们希望把所有现存的与将被发展出来的各种能力成熟度模型,集成到一个框架中去。这个框架用于解决两个问题:第一,软件获取办法的改革;第二,从集成产品与过程发展的角度出发,建立一种包含健全的系统开发原则的过程改进。
CMM为软件企业的过程能力提供了一个阶梯式的改进框架,它基于过去所有软件工程过程改进的成果,吸取了以往软件工程的经验教训,提供了一个基于过程改进的框架;它指明了一个软件组织在软件开发方面需要管理哪些主要工作、这些工作之间的关系、以及以怎样的先后次序,一步一步的做好这些工作而使软件组织走向成熟。
一、CMM的诞生
信息时代,软件质量的重要性越来越为人们所认识。软件是产品、是装备、是工具,其质量使得顾客满意,是产品市场开拓、事业得以发展的关键。而软件工程领域在1992年至1997年取得了前所未有的进展,其成果超过软件工程领域过去15年来的成就总和。
软件管理工程引起广泛注意源于20世纪70年代中期。当时美国国防部曾立题专门研究软件项目做不好的原因,发现70%的项目是因为管理不善而引起,而并不是因为技术实力不够,进而得出一个结论,即管理是影响软件研发项目全局的因素,而技术只影响局部。到了20世纪90年代中期,软件管理工程不善的问题仍然存在,大约只有10%的项目能够在预定的费用和进度下交付。软件项目失败的主要原因有:需求定义不明确;缺乏一个好的软件开发过程;没有一个统一领导的产品研发小组;子合同管理不严格;没有经常注意改善软件过程;对软件构架很不重视;软件界面定义不善且缺乏合适的控制;软件升级暴露了硬件的缺点;关心创新而不关心费用和风险;军用标准太少且不够完善等等。在关系到软件项目成功与否的众多因素中,软件度量、工作量估计、项目规划、进展控制、需求变化和风险管理等都是与工程管理直接相关的因素。由此可见,软件管理工程的意义至关重要。
软件管理工程和其它工程管理相比有其特殊性。首先,软件是知识产品,进度和质量都难以度量,生产效率也难以保证。其次,软件系统复杂程度也是超乎想象的。因为软件复杂和难以度量,软件管理工程的发展还很不成熟。
软件管理工程的发展,在经历了从70年代开始以结构化分析与设计、结构化评审、结构化程序设计以及结构化测试为特征的结构化生产时代,到90年代中期,以CMM模型的成熟模型和日益为市场接受为标志,已经进入以过程成熟模型CMM、个体软件过程PSP和群组软件过程TSP为标志的以过程为中心的时代,而软件发展第三个时代,及软件工业化生产时代,从90年代中期软件过程技术的成熟和面向对象技术、构件技术的发展为基础,已经渐露端倪,估计到2005年,可以实现真正的软件工业化生产,这个趋势应该引起软件企业界和有关部门的高度重视,及早采取措施,跟上世界软件发展的脚步。软件生产转向以改善软件过程为中心,是世界各国软件产业或迟或早都要走的道路。
软件过程改善是当前软件管理工程的核心问题。50多年来计算事业的发展使人们认识到要高效率、高质量和低成本地开发软件,必须改善软件生产过程。软件管理工程走过了一条从70年代开始以结构化分析与设计、结构化评审、结构化程序设计以及结构化测试到90年代中期以过程成熟模型CMM、个体软件过程PSP和群组软件过程TSP为标志的以过程为中心向着软件过程技术的成熟和面向对象技术、构件技术的发展为基础的真正软件工业化生产的道路。软件生产转向以改善软件过程为中心,是世界各国软件产业或迟或早都要走的道路。软件工业已经或正在经历着"软件过程的成熟化",并向"软件的工业化"渐进过渡。规范的软件过程是软件工业化的必要条件。
软件过程研究的是如何将人员、技术和工具等组织起来,通过有效的管理手段,提高软件生产的效率,保证软件产品的质量。由此诞生了软件过程的三个流派:CMU-SEI的CMM/PSP/TSP;ISO 9000质量标准体系;ISO/IEC 15504(SPICE)。
CMM/PSP/TSP即软件能力成熟度模型/ 个体软件过程/群组软件过程,是1987年美国 Carnegie Mellon 大学软件工程研究所(CMU/SEI)以W.S.Humphrey为首的研究组发表的研究成果"承制方软件工程能力的评估方法";SO 9000质量标准体系是在70年代由欧洲首先采用的,其后在美国和世界其他地区也迅速地发展起来。目前,欧洲联合会积极促进软件质量的制度化,提出了如下ISO9000软件标准系列:ISO9001、ISO9000-3、ISO9004-2、ISO9004-4、ISO9002;ISO/IEC 15504(SPICE)是1991年国际标准化组织采纳了一项动议,开展调查研究,按照CMU-SEI的基本思路,产生的技术报告ISO/IEC 15504--信息技术软件过程评估
目前,学术界和工业界公认美国 Carnegie Mellon 大学软件工程研究所(CMU/SEI) 以W.S.Humphrey为首主持研究与开发的软件能力成熟度模型CMM是当前最好的软件过程,已成为业界事实上的软件过程的工业标准。
二、CMM的发展
1987年美国 Carnegie Mellon 大学软件工程研究所(CMU/SEI)以W.S.Humphrey为首的研究组发表了CMM/PSP/TSP 技术,为软件管理工程开辟了一条新的途经。
CMM框架用5个不断进化的层次来评定软件生产的历史与现状:其中初始层是混沌的过程,可重复层是经过训练的软件过程,定义层是标准一致的软件过程,管理层是可预测的软件过程,优化层是能持续改善的软件过程。任何单位所实施的软件过程,都可能在某一方面比较成熟,在另一方面不够成熟,但总体上必然属于这5个层次中的某一个层次。而在某个层次内部,也有成熟程度的区别。在CMM框架的不同层次中,需要解决带有不同层次特征的软件过程问题。因此,一个软件开发单位首先需要了解自己正处于哪一个层次,然后才能够对症下药地针对该层次的特殊要求解决相关问题,这样才能收到事半功倍的软件过程改善效果。任何软件开发单位在致力于软件过程改善时,只能由所处的层次向紧邻的上一层次进化。而且在由某一成熟层次向上一更成熟层次进化时,在原有层次中的那些已经具备的能力还必须得到保持与发扬。
软件产品质量在很大程度上取决于构筑软件时所使用的软件开发和维护过程的质量。软件过程是人员密集和设计密集的作业过程:若缺乏有素训练,就难以建立起支持实现成功是软件过程的基础,改进工作亦将难以取得成效。CMM描述的这个框架正是勾列出从无定规的混沌过程向训练有素的成熟过程演进的途径。
CMM包括两部分"软件能力成熟度模型"和"能力成熟度模型的关键惯例"。"软件能力成熟度模型"主要是描述此模型的结构,并且给出该模型的基本构件的定义。"能力成熟度模型的关键惯例"详细描述了每个"关键过程方面"涉及的"关键惯例"。这里"关键过程方面"是指一组相关联的活动;每个软件能力成熟度等级包含若干个对该成熟度等级至关重要的过程方面,它们的实施对达到该成熟度等级的目标起到保证作用。这些过程域就称为该成熟度等级的关键过程域,反之有非关键过程域是指对达到相应软件成熟度等级的目标不起关键作用。归纳为:互相关联的若干软件实践活动和有关基础设施的一个集合。而"关键惯例"是指使关键过程方面得以有效实现和制度化的作用最大的基础设施和活动,对关键过程的实践起关键作用的方针、规程、措施、活动以及相关基础设施的建立。关键实践一般只描述"做什么"而不强制规定"如何做"。各个关键惯例按每个关键过程方面的5个"公共特性"(对执行该过程的承诺,执行该过程的能力,该过程中要执行的活动,对该过程执行情况的度量和分析,及证实所执行的活动符合该过程)归类,逐一详细描述。当作到了某个关键过程的的全部关键惯例就认为实现了该关键过程,实现了某成熟度级及其以低级所含的全部关键过程就认为达到到了了该级。
上面提到了CMM把软件开发组织的能力成熟度分为5个的等级。除了第1级外,其他每一级由几个关键过程方面组成。每一个关键过程方面都由上述5种公共特性予以表征。CMM给每个关键过程了一些具体目标。按每个公共特性归类的关键惯例是按该关键过程的具体目标选择和确定的。如果恰当地处理了某个关键过程涉及的全部关键惯例,这个关键过程的各项目标就达到了,也就表明该关键过程实现了。这种成熟度分级的优点在于,这些级别明确而清楚地反映了过程改进活动的轻重缓急和先后顺序。
❼ 什么是典型的软件三层结构软件设计为什么要分层软件分层有什么好处
软件的三层结构一般指的是 MVC
M 是model的简称是指实体层
V是view的简称是指视图层
C是Controller的简称是指控制层
具体可查看网络http://ke..com/link?url=_7Iy6spb037lZr5nJHHv-jGRFhxpmck4PCHz6mrXF_-_6M
MVC的优点
1.低耦合性
视图层和业务层分离,这样就允许更改视图层代码而不用重新编译模型和控制器代码,同样,一个应用的业务流程或者业务规则的改变只需要改动MVC的模型层即可。因为模型与控制器和视图相分离,所以很容易改变应用程序的数据层和业务规则。
2.高重用性和可适用性
随着技术的不断进步,现在需要用越来越多的方式来访问应用程序。MVC模式允许你使用各种不同样式的视图来访问同一个服务器端的代码。它包括任何WEB(HTTP)浏览器或者无线浏览器(wap),比如,用户可以通过电脑也可通过手机来订购某样产品,虽然订购的方式不一样,但处理订购产品的方式是一样的。由于模型返回的数据没有进行格式化,所以同样的构件能被不同的界面使用。例如,很多数据可能用HTML来表示,但是也有可能用WAP来表示,而这些表示所需要的命令是改变视图层的实现方式,而控制层和模型层无需做任何改变。
3.较低的生命周期成本
MVC使开发和维护用户接口的技术含量降低。
4.快速的部署
使用MVC模式使开发时间得到相当大的缩减,它使程序员(Java开发人员)集中精力于业务逻辑,界面程序员(HTML和JSP开发人员)集中精力于表现形式上。
5.可维护性
分离视图层和业务逻辑层也使得WEB应用更易于维护和修改。
6.有利于软件工程化管理
由于不同的层各司其职,每一层不同的应用具有某些相同的特征,有利于通过工程化、工具化管理程序代码。
❽ 在软件工程里,如何将一个考务处理系统的数据流图转化为层次图
第一步,画子系统的输入输出
把整个系统视为一个大的加工,然后根据数据系统从哪些外部实体接收数据流,以及系统发送数据流到那些外部实体,就可以画出输入输出图。这张图称为顶层图。
第二步,画子系统的内部
把顶层图的加工分解成若干个加工,并用数据流将这些加工连接起来,使得顶层图的输入数据经过若干加工处理后,变成顶层图的输出数据流。这张图称为0层图。从一个加工画出一张数据流图的过程就是对加工的分解。
可以用下述方法来确定加工:在数据流的组成或值发生变化的地方应该画出一个加工,这个加工的功能就是实现这一变化,也可以根据系统的功能决定加工。
确定数据流的方法
用户把若干数据当作一个单位来处理(这些数据一起到达、一起处理)时,可以把这些数据看成一个数据流。
关于数据存储
对于一些以后某个时间要使用的数据,可以组织成为一个数据存储来表示。
第三步,画加工的内部
把每个加工看作一个小系统,把加工的输入输出数据流看成小系统的输入输出流。于是可以象画0层图一样画出每个小系统的加工的DFD图。
第四步,画子加工的分解图
对第三步分解出来的DFD图中的每个加工,重复第三步的分解过程,直到图中尚未分解的加工都是足够简单的(即不可再分解)。至此,得到了一套分层数据流图。
第五步,对数据流图和加工编号
对于一个软件系统,其数据流图可能有许多层,每一层又有许多张图。为了区分不同的加工和不同的DFD子图,应该对每张图进行编号,以便于管理。