① 软件工程能从事人工智能吗
软件工程与人工智能是相通但又不完全相同的;
软件工程
软件工程是一门研究用工程化方法构建和维护有效的、实用的和高质量的软件的学科。它涉及程序设计语言、数据库、软件开发工具、系统平台、标准、设计模式等方面。
在现代社会中,软件应用于多个方面。典型的软件有电子邮件、嵌入式系统、人机界面、办公套件、操作系统、编译器、数据库、游戏等。同时,各个行业几乎都有计算机软件的应用,如工业、农业、银行、航空、政府部门等。这些应用促进了经济和社会的发展,也提高了工作效率和生活效率
人工智能应用工程师
主要从事机器学高级工程师、人工智能工程师、数据挖掘工程,爬虫工程师、算法工程师等职业。
② 如何转行到人工智能/机器人领域
、AI/机器人PM在做的事情,和常规互联网PM有何不同?面临的问题和困难,有哪些不同?
答:做事流程,基本上是一致的,但不同之处在于:
需求把握。AI/机器人领域还处于探索期(找刚需),产品形态甚至典型用户群体(画像)都还不明确,所以信息收集(行业/竞品/用户等)、创意思考、产品验证的工作会更被突出。
闭环验证。产品核心价值的设计和验证工作,很难以数据分析为主驱动,而需要PM有大胆的思路和敏锐的洞见。因为A)从手机场景,升级到机器人场景,天翻地覆的变化。B)用户门槛远高于互联网,用户量和用户数据远比不上移动互联网产品的量级;C)产品很可能和硬件相关,导致迭代周期更长,收集有效数据更难。
交互设计。场景巨变,使得交互方式从纯软件(界面、触屏)/纯硬件,升级到多模态交互等更复杂的人机交互形式,还没有形成清晰的交互体系标准。很多人没意识到的是,新时代,不仅是新技术驱动,更关键的标志是新交互(还可能有新硬件)。
功能设计。比如做搜索,和做AI问答或对话,还是很不同的东西。并且,一旦和硬件相关,难度就会陡增。
数据分析。语音交互产生的数据分析难度远高于触屏交互。因为触屏交互有效表达用户意图的概率非常高,而语音交互识别出的数据往往和用户意图有很大偏差。
2、AI/机器人PM需要具备的能力和素质,和常规互联网PM有何不同?
答:各方面的能力和素质都需要跨越式升级。由浅入深的说——
更广更深的知识(经验)积。:不仅是常规的app、网站等,还可能包括硬件、OS、量产、甚至新的用户群体认知(小孩、老人、外国人……)
更强的技术理解能力。对这点,见仁见智,有2种观点:A,必须有技术背景,真的懂软硬件开发到底是怎么回事;B,本质上需要能清楚“什么能做什么不能做”,所以有相关经验也行。或者,如果整个产品团队有其他人能做到这点也行,互补配合。不论如何,至少是比常规PM的要求要高的。如果本硕博就在接触神经网络、深度学习、自动化等方面,会有点优势。
更高效的学习能力/悟性。不仅需要学习以上内容,更可能随时需要去学习新的领域(甚至是技术领域)。
重新认识人的感知和交互方式。参见第一个回答的第3小点。
更强的洞察力和创造力。参见第一个回答的第2小点。另外,还包括产品设计时的想象力——大脑模拟体验过程(手机app可以弄原型,但机器人体验怎么办。。。)
行业认知/趋势判断。行业周期性如何?AI/机器人领域的发展方向如何?前沿的这些新技术/新产品形态,哪个能最终胜出?如何组织这些新技术/新产品形态?时间窗(时机)如何?政府/大学对行业的影响,如何理解、应对和借势?还有国际化思考……
更深入的人文素养和灵魂境界。个人理解,真正的AI/机器人产品,需要超越纯逻辑性的思维和内涵。比如,有人认为,对于机器人产品,把功能价值做好(有用)就可以了,但我个人认为,机器人和人交互时,一定会伴随着情感等非理性影响,这不是设计者想规避就能去除的。当我第一次近距离看到超大的工业机器人时,被震惊了,因为那种协调的动作和节奏,本能的会让观察者觉得“像人一样”(不是个机器。);另外一个例子,在表演/戏剧领域,表演者是可以完全通过动作的方向、幅度、节奏等来表达情感的!可参看Pixar 1986年的动画短片《小台灯》(Luxo Jr)。
更深入的说,一个产品,本质是其公司、设计者灵魂能量层次的外化,一个精神层次不高的团队,不可能做出一个跨时代的AI/机器人产品。
3、如何判断我是否真的对AI/机器人领域感兴趣?如何判断我是否适合AI/机器人领域?
答:“感兴趣”不是一个形容词,而是一个动词——关键不是你多么兴奋,而是兴奋过后,你具体做了什么。
如果做到了后面第四点的过程(至少一部分),才是真正的证明了“感兴趣”。也只有基于此,并且真的去做了1、2个产品feature设计(可以给自己出需求或研究课题),才可以判断你是否合适。
另外,如果理解/讨论停留在下列问题层面(无营养、无逻辑、无边界、无方案),就还不适合:
对于“强人工智能”的好奇心与普通群众或科幻小说家别无二致。
人工智能再牛逼也摆脱不了“吹灯拔蜡(断电)”的尴尬,根本不智能。
我想和人工智能谈恋爱。
大自然到处存在着人类无法理解的算法, 人工智能再牛,也是大自然的一部分。
智能家居随时监控你的生活状态,这种可能产生危险的东西,除非能够证明可靠性,否则不会使用。
补充一个同事的观点:是不是想重新认识自我、认识人类。
4、如何(转行)成为一个合格的AI/机器人PM,需要做什么准备?
答:个人建议
看知乎上“所有”和人工智能/机器人相关的问题、看相关书籍或课程(后面有附录详细列出)。
体验各种AI/机器人产品、了解必要的产品/技术现状(比如语音交互相关、各种传感器及其作用),收集行业公司/团队/机构信息。
整理出自己的独到见解。认真思考人类行为、研究自我。
筛选几个你真正认可的创业团队,想尽办法结识其中的牛人(带上你的独到见解),去交流(先想想,为什么你值得ta花时间),甚至申请一份实习或兼职工作。
③ 普通程序员,转行人工智能怎么转
根据我的观察,去解决具体问题是不划算的,因为即便你对那个问题有深入的认识,仍然需要烧掉大量GPU,才能搞出一点效果来。看论文的话,有不少论文,连完整的公式都不列一遍的,就画个layer的示意图让你自己蒙去。
还是造深度学习框架才是最好的。现有框架都太烂了,跑分基本上全靠cuDNN,碰到cuDNN里没有的东西,就让你自己去写CUDA。而大部分人更需要的是能直接从数学公式到能运行的代码。毕竟写GPU代码也非常花时间的。。
④ 软件工程是否和人工智能有关
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
目前人工智能行业的就业方向主要分为搜索、图像处理、计算机视觉、模式识别和图像处理等,搜索方向如网络、谷歌、微软等,包括智能搜索、语音搜索、图片搜素、视频搜索等。图像处理如医学的图像处理,医疗设备、医疗器械都会涉及到图像处理和成像。
人工智能是需要人力、脑力、开发、高等技术与不断的研究和尝试等等一系列超高难度的作业才能完成的科技产品。当然这种研究是得到国家和人们大力支持的发展。它的发展对国际影响力是非常大的。人工智能也可以定义为高仿人类,虽然不可能会像人一样具有灵敏的反应和思考能力,但人工智能是按照人类的思想结构等等的探索而开发的研究。
人工智能的开发最主要的目的就是为了替人类做复杂、有危险难度、重复枯燥等的工作,所以人工智能是以人类的结构来设计开发的,人工智能在得到较好的开发后国家也是全力给予支持。人工智能的开发主要也是为了帮助和便利人类的生活。所以人工智能的定义一直以来都是以“协助人类”而存在的。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。
以后可能在很多传统行业,比如银行,会有人工智能帮你得到更好的收益。信用卡或其他的贷款会由人工智能来决定哪些人士可以安全地放贷,而且会还钱。然后再往下人工智能可以开始动了,就可以进入工业机器人、商业机器人,终进入家庭机器人。
⑤ 学习人工智能AI需要哪些知识
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。
人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
⑥ 大数据如何转人工智能
在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。 关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,从机器学习谈起。
⑦ 人工智能 用到哪些专业
人工智能核心课程
系统设计移动通信系统概率理论运营策略电路分析离散数学计算机网络基础网络安全操作系统网络与分布式计算微积分算法与编程计算机系统 。
人工智能大学前学术准备
须具有良好的逻辑推理能力和缜密的思维,有较好的数学基础以及沟通和团队合作能力。对于想申请该方向研究生课程来说,高等数学、离散数学的基础以及编程、算法、数据库的应用是最重要的升学基础。
人工智能研究与升学方向
除了本专业外,我们还建议申请:通讯系统、管理信息系统、计算机科学、金融工程等领域的专业。
人工智能常见职业
信息管理员网络工程师互联网技术经理安全工程师。
人工智能近似专业
计算机工程/技术人工智能,信息技术,信息系统,信息系统安全,编程语言与软件工程,计算机科学,网络和电信,数据建模/数据库管理,通信工程信息科学,数学与计算机科学,计算机视觉。
⑧ 毕业设计题目(软件工程,人工智能方向)
人工智能毕业设计(论文)课题简介
JHF1 基于VGA采集卡的VGA信号实时采集技术的研究
传统VGA信号采集通常采用软件抓屏或VGA转AV方式,但两者都面临着各种自身无法克服的弱点。软件抓屏方式通过在计算机上安装软件方式实现,通过软件进行抓屏和压缩,严重影响采集计算机的性能;在播放视频文件时,无法实时采集到画面,出现视频卡壳或者黑屏的现象。采用VGA转AV方式,VGA信号转换为视频以后,即使不压缩,清晰度也大大降低,文字、网页等内容几乎无法看清,再经过压缩,信号质量可能会更差,很难满足实际教学的需求。传统VGA信号的采集方式严重制约着多媒体教学及远程教育的发展。采用基于VGA采集卡的VGA信号实时采集技术,即直接采集设备的VGA数据,既能保证信号的连续实时,又能保证清晰不失真,从而完美解决了VGA信号的实时采集压缩这一难题。
JHF2 基于PC的网络视频服务器的设计
视频服务器可以看作是不带镜头的网络摄像机,或是不带硬盘的DVR,它的结构也大体上与数字硬盘录像机相似,是由一个或多个模拟视频输入口、图像数字处理器、压缩芯片和一个具有网络连接功能的服务器所构成。视频服务器将输入的模拟视频信号数字化处理后,以数字信号的模式传送至网络上,从而实现远程实时监控的目的。由于视频服务器将模拟摄像机成功地“转化”为网络摄像机,因此它也是网络监控系统与当前CCTV模拟系统进行整合的最佳途径。网络视频服务器除了可以达到与网络摄像机相同的功能外,在设备的配置上更显灵活,克服了网络摄像机通常受到本身镜头与机身功能较弱等不足。
JHF3 教育资源库管理系统的设计
教育资源库是教育信息化中的主要组成部分,教育资源库的建设包括软硬件平台、资源和服务等方面的建设。教育资源库软件平台是支撑教育资源管理和使用的基础平台,是整个软件平台的核心。系统平台支持基于B/S结构的各类Web应用,通过“Web Service”技术提供了一整套接口机制实现跨平台、跨服务器的系统耦合,实现统一用户、统一登录、统一产品入口等重要功能。从资源使用和管理的流程出发,平台的功能包括资源目录浏览、资源检索、资源前台服务管理、系统后台管理、计费管理、资源统计、个人知识管理器等主要功能,对八类标准资源子库实施操作。
SSD1 ▲应用不确定性推理评估交通流及安全性
城市交通拥已经成为社会急需解决的迫切问题,也是当前个学科协同作战的重大课题。拟采用人工智能中的不确定性推理方法评估交通流及安全性问题,并提出合理的建议。
SSD2 ▲大学校园安全报警系统研制
根据校具体情况,联系公安部处、学生处等有关部门,研制该系统软件,对于解决灾害和突发事件等建立安全预警专家系统有实际意义,且能通过计算机软件和人工智能的工具实现理论与实际相结合。
SSD3 基于PC的数字硬盘录像机的设计
数字硬盘录像机硬件组成上采用PC机,通用性强;软件采用了嵌入式LINUX操作系统,以及在此基础上开发的应用软件,没有版权问题的困扰。既无需购买昂贵的操作系统,又遗弃了使用盗版软件的尴尬。操作系统为嵌入式LINUX系统,操作系统可以做的相对比较小,既可以加载在硬盘上,也可以固化在优盘、CF卡、电子硬盘上,写入数据后永不丢失,便于系统本身的稳定以及方便升级。系统稳定性好、通用性强、适用性广,对断电、非法操作、病毒等均不受影响。
GSY1 基于支持向量机行人检测
模板匹配的方法在行人检测问题中也是适用,用于匹配的模板的形状类似棒棒糖。多数清况下,行人会在手放在身体两侧,这意味在多数清况下,行人是有可能被检测,此外行人的运动也具有特征,同样也可被检测出来.有多种特征选择算法可供选择,选择了小波系数作为窗口的局部特征,这里小波系数是对特定滤波器的响应.特征选定以后,可以按照训练支持向量机方法,诸如自举方法进一步改善系统性能。
GSY2 基于行人检测的WEB服务探测技术
1)感知界面 互联网出现使人为中心的人机交互逐步演变为人网交互,用计算机代替人实现对多媒体数据流自动分析,进而实现网络多媒体数据有效的管理,查询和组织,交互检索,可视化反馈界面,网络交互.面向WWW的多媒体的检索系统.
2)多媒体推理 从智能和推理地角度,任何涉及多媒体处理的活动,如多媒体展示,多媒体著作,视觉设计,都可以当作多媒体推理.
GSY3 地理信息系统的设计与实现
将地理信息系统技术应用决策和管理,论述系统的设计方法,实现方案和技术特点.
GSY4 一种自适应逃逸微粒群算法
针对收敛速度慢,容易陷入局部最小等缺点,给出一种自适应逃逸微粒群算法,逃逸行为是一种变异操作,逃逸微粒群能有效进行全局和局部搜索,收敛速度快,采用复杂函数优化仿真自适应逃逸微粒群算法结果.
GSY5 几何配准与立体观察
几何配准是图象空间叠加,镶嵌,加网格的前题,是分析和比较同一类型或不同类型的成像系统在同一时间摄取同一景物的图象的首要条件,否则就不可能正确绘出各类型(平面和立体)的复合图象或时间上变化图形。
⑨ 人工智能最需要什么样的知识
差不多需要很多很多的智商吧因为人工机器人差不多都是非常自然的智能的比我们人工要多得多但是他也是人工智能的智商也是有限的但是也不不是很差一般都是由专业人士来操控的而不像我们这种一般人而操控的差不多是智商都超过100的吧大概
⑩ 如果想往人工智能发展,本科应该报什么专业
可以报考以下几个专业:
1、人工智能专业
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。
2、计算机科学与技术专业
因为人工智能是计算机学科的一个分支,所以想往人工智能发现发展,也可以学习计算机科学与技术专业。计算机科学与技术是国家一级学科,主修大数据技术导论、数据采集与处理实践(Python)、Web前/后端开发、统计与数据分析、机器学习等。
3、软件工程专业
软件工程专业是2002年国家教育部新增专业。软件工程专业是一门研究用工程化方法构建和维护有效的、实用和高质量的软件的学科。它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。
4、电子信息专业
电子信息专业是一个电子和信息工程方面的较宽口径专业。本专业学生主要学习信号的获取与处理、电厂设备信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的基本能力。
5、自动化专业
自动化专业是以数学与自动控制理论为主要理论基础,以电子技术、计算机信息技术、传感器与检测技术等为主要技术手段,利用各种自动化装置分析与设计各类控制系统,为人类生产生活服务的一门专业。
专业有四个发展方向,第一个是过程控制方向,第二个是嵌入式系统方向,第三个是运动控制、机器人方向,第四个是人工智能方向。