导航:首页 > 工程技术 > 接触网工程施工工艺标准

接触网工程施工工艺标准

发布时间:2021-08-15 13:31:07

1. 接触网工程施工作业操作手册这书怎么样

第二章 一般安全规定

第6条 为保证人身安全,除牵引供电专业人员按规定作业外,任何人员及所携带的物件、作业工器具等须与牵引供电设备高压带电部分保持2m以上的距离,与回流线、架空地线、保护线保持1m以上距离,距离不足时,牵引供电设备须停电。

第7条 电气化铁路区段,具有升降、伸缩、移动平台等功能的机械设备进行施工、装卸等作业时,作业范围与牵引供电设备高压带电部分须保持2m以上的距离,与回流线、架空地线、保护线保持1m以上距离,距离不足时,牵引供电设备须停电。

第8条 在距牵引供电设备高压带电部分2m以外,与回流线、架空地线、保护线1m以外,临近铁路营业线作业时,牵引供电设备可不停电,但须按照铁路营业线施工安全管理有关规定执行。

第9条 机车、动车及各种车辆上方的接触网设备未停电并办理安全防护措施前,禁止任何人员攀登到车顶或车辆装载的货物上。

第10条 电气化区段上水、保洁、施工等作业,不得将水管向供电线路方向喷射,站车保洁不得采用向车体上部喷水方式洗刷车体。

第11条 牵引供电设备故障时,与牵引供电设备相连接的支柱、接地引下线、综合接地线等可能出现高电压,未采取安全措施前,禁止与其接触,并保持安全距离。

第12条 发现牵引供电设备断线及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之接触,应立即通知附近车站,在牵引供电设备检修人员到达未采取措施以前,任何人员均应距已断线索或异物处所10m以外。

第13条 牵引供电设备支柱及各部接地线损坏,回流吸上线与钢轨或扼流变连接脱落时,禁止非专业人员与之接触。

第14条 距牵引供电设备支柱及牵引供电设备带电部分5m范围以内具备接入综合接地条件的金属结构应纳入综合接地系统;不能接入综合接地系统的金属结构须装设接地装置,接地电阻一般不大于10Ω。

第15条 站内和行人较多的地段,牵引供电设备支柱在距轨面2.5m高处均要设白底黑字“高压危险”并有红色闪电符号的警示标志。禁止借助接触网支柱搭脚手架,必须借助接触网支柱登高时,必须有供电专业人员现场监护。

第16条 天桥、跨线桥靠近或跨越牵引供电设备的地方,须设置防护栅网,栅网由所附属结构的产权或工程建设单位负责安设。防护栅网安设“高压危险”标志,警示标志由供电设备管理单位制作安装。

第17条 电气化铁路区段车站风雨棚、跨线桥、隧道等构建物应安装牢固,状态良好,不得脱落。距牵引供电设备2m范围内不得出现漏水、悬挂冰凌等现象。附挂在跨线桥、渠上的管路,以及通讯、照明等线缆,须设专门固定设施,且安装可靠,不得脱落。
第18条 电力线路、光电缆、管路等跨越电气化铁路施工时,须在接触网停电并做好安全防护措施后进行。

2. 接触网的施工要求

1 修筑于路基上的接触网支柱基础应与路基同步修建,不得因其施工而损坏、影响路基的稳固与安全。
2 接触网支柱基础施工应符合下列要求:
(1) 接触网支柱基础工程应按《客运专线铁路电力牵引供电施工技术指南》及设计要求施工,不得破坏路基及防护工程结构。
(2) 接触网支柱基础基坑必须全部用混凝土浇筑;有渗水暗沟地段,接触网支柱基础开挖不得破坏渗水暗沟。
(3) 接触网拉线基础与下锚支柱基础平面位置应符合设计要求。
(4) 线路两侧同里程两基础中心连线应垂直于线路正线。
3 接触网支柱基础的基坑开挖方法应符合设计和施工技术方案的要求,不得影响路基安全、稳定。
4 接触网支柱基础的基坑全部用混凝土灌注密实后,支柱基础表面应与路基表面衔接平顺。
5 接触网支柱基础混凝土强度应符合规定。
6 预埋件数量、位置、型号和综合接地应符合设计要求。
7 接触网支柱距线路中心线位置、沿线路纵向位置、截面尺寸、埋置深度的允许偏差、检验数量及检验方法应符合表13.3.7的规定。
表接触网支柱距线路中心线位置、沿线路纵向位置、截面尺寸、
埋置深度的允许偏差、检验数量及检验方法 序号 检验项目 允许偏差 施工单位检验数量 检验方法 1 距线路中心线位置 0,+20mm 按接触网支柱数量的10%抽样检验 尺量 2 沿线路纵向位置 ±10mm 仪器测量 3 形状尺寸(截面尺寸) 0,+50mm 尺量 4 埋置深度 不小于设计值值 仪器测量

3. 请问隧道内接触网施工工艺流程是什么,看施工手册隧道桥梁这里看懵了

第二章 一般安全规定第6条 为保证人身安全,除牵引供电专业人员按规定作业外,任何人员及所携带的物件、作业工器具等须与牵引供电设备高压带电部分保持2m以上的距离,与回流线、架空地线、保护线保持1m以上距离,距离不足时,牵引供电设备须停电。第7条 电气化铁路区段,具有升降、伸缩、移动平台等功能的机械设备进行施工、装卸等作业时,作业范围与牵引供电设备高压带电部分须保持2m以上的距离,与回流线、架空地线、保护线保持1m以上距离,距离不足时,牵引供电设备须停电。第8条 在距牵引供电设备高压带电部分2m以外,与回流线、架空地线、保护线1m以外,临近铁路营业线作业时,牵引供电设备可不停电,但须按照铁路营业线施工安全管理有关规定执行。第9条 机车、动车及各种车辆上方的接触网设备未停电并办理安全防护措施前,禁止任何人员攀登到车顶或车辆装载的货物上。第10条 电气化区段上水、保洁、施工等作业,不得将水管向供电线路方向喷射,站车保洁不得采用向车体上部喷水方式洗刷车体。第11条 牵引供电设备故障时,与牵引供电设备相连接的支柱、接地引下线、综合接地线等可能出现高电压,未采取安全措施前,禁止与其接触,并保持安全距离。第12条 发现牵引供电设备断线及其部件损坏,或发现牵引供电设备上挂有线头、绳索、塑料布或脱落搭接等异物,均不得与之接触,应立即通知附近车站,在牵引供电设备检修人员到达未采取措施以前,任何人员均应距已断线索或异物处所10m以外。第13条 牵引供电设备支柱及各部接地线损坏,回流吸上线与钢轨或扼流变连接脱落时,禁止非专业人员与之接触。第14条 距牵引供电设备支柱及牵引供电设备带电部分5m范围以内具备接入综合接地条件的金属结构应纳入综合接地系统;不能接入综合接地系统的金属结构须装设接地装置,接地电阻一般不大于10Ω。第15条 站内和行人较多的地段,牵引供电设备支柱在距轨面2.5m高处均要设白底黑字“高压危险”并有红色闪电符号的警示标志。禁止借助接触网支柱搭脚手架,必须借助接触网支柱登高时,必须有供电专业人员现场监护。第16条 天桥、跨线桥靠近或跨越牵引供电设备的地方,须设置防护栅网,栅网由所附属结构的产权或工程建设单位负责安设。防护栅网安设“高压危险”标志,警示标志由供电设备管理单位制作安装。第17条 电气化铁路区段车站风雨棚、跨线桥、隧道等构建物应安装牢固,状态良好,不得脱落。距牵引供电设备2m范围内不得出现漏水、悬挂冰凌等现象。附挂在跨线桥、渠上的管路,以及通讯、照明等线缆,须设专门固定设施,且安装可靠,不得脱落。第18条 电力线路、光电缆、管路等跨越电气化铁路施工时,须在接触网停电并做好安全防护措施后进行。

4. 接触网的技术要求

接触网担负着把从牵引变电所获得的电能直接输送给电力机车使用的重要任务。因此接触网的质量和工作状态将直接影响着电气化铁道的运输能力。由于接触网是露天设置,没有备用,线路上的负荷又是随着电力机车的运行而沿接触线移动和变化的,对接触网提出以下要求:
1.在高速运行和恶劣的气候条件下,能保证电力机车正常取流,要求接触网在机械结构上具有稳定性和足够的弹性。
2.接触网设备及零件要有互换性,应具有足够的耐磨性和抗腐蚀能力并尽量延长设备的使用年限。
3.要求接触网对地绝缘好,安全可靠。
4.设备结构尽量简单,便于施工,有利于运营及维修。在事故情况下,便于抢修和迅速恢复送电。
5.尽可能地降低成本,特别要注意节约有色金属及钢材。
总的来说,要求接触网无论在任何条件下,都能保证良好地供给电力机车电能,保证电力机车在线路上安全,高速运行,并在符合上述要求的情况下,尽可能地节省投资、结构合理、维修简便、便于新技术的应用。 支柱装置用以支持接触悬挂,并将其负荷传给支柱或其它建筑物。支持装置包括腕臂、水平拉杆、悬式绝缘子串,棒式绝缘子及其它建筑物的特殊支持设备。
支柱是接触网中最基本、应用最广泛的支撑设备,用来承受接触悬挂与支持设备的负荷。接触网支柱,按其使用材质分为预应力钢筋混凝土支柱和钢支柱两大类。
预应力钢筋混凝土支柱,简称为钢筋混凝土支柱采用高强度的钢筋,在制造时预先使钢筋产生拉力,它比普通钢筋混凝土支柱在同等容量情况下节省钢材、强度大、支柱轻等优点。钢筋混凝土支柱本身是一个整体结构,不需另制基础。
钢柱以角钢焊成架结构,具有支柱较轻、强度高、抗碰撞、安装运输方便等优点。根据安装使用地点不同,钢柱的型号规格及外形结构也不同。
支柱按其在接触网中的作用可分为中间支柱、转换支柱、中心支柱、锚柱、定位支柱道岔支柱、软横跨支柱、硬横跨支柱及桥梁支柱等几种。 在接触网锚段关节处或其他接触悬挂下锚地方采用锚柱。锚柱在垂直线路方向上起中间柱的作用,即支撑工作支接触悬挂;在平行线路方向上,对需要下锚的非工作支接触悬挂(即下锚支接触悬挂)进行下锚、固定。
它能承受两个方向的负荷,在垂直线路方向起中间支柱的作用,在顺线路方向,承受接触悬挂下锚的全部拉力。 转换支柱用于接触网锚段关节的两锚柱之间,它同时支撑两支接触悬挂,其中一支为工作支,另一支为下锚支(也称非工作支),电力机车受电弓在此两柱之间进行锚段转换。根据锚段关节是否起电分段的作用,转换柱分为绝缘转换柱和非绝缘转换柱。
转换支柱承受工作支、非工作支接触悬挂及其支持装置的重力、两支接触悬挂的风负荷和导线(接触悬挂)因改变方向而产生的水平分力。 中心支柱位于四跨绝缘锚段关节内两转换柱之间,它同时支撑两个工作支接触悬挂,并使两工作支接触线在此柱定位处等高,且使两支接触悬挂间保持规定的绝缘距离。
中心支柱承受两工作支接触悬挂及其支持装置的重力、两支接触悬挂的风负荷和导线因改变方向而产生的水平分力。 接触网承力索的作用是通过吊弦将接触线悬挂起来。承力索还可承载一定电流来减小牵引网阻抗,降低电压损耗和能耗。
承力索根据材质可分为铜承力索、钢承力索、铝包钢承力索。
钢承力索需采取防腐措施。 在链形悬挂中,接触线通过吊弦悬挂在承力索上。按其使用位置是在跨距中、软横跨上或隧道内有不同的吊弦类型,吊弦是链形悬挂中的重要组成部件之一。
在链形悬挂中安设吊弦,使每个跨距中在不增加支柱的情况下,增加了对接触线的悬挂点,这样使接触线的弛度和弹性均得到改善,提高了接触线工作质量。另外,通过调节吊弦的长度来调整,保证接触线对轨面的高度,使其符合技术要求。
吊弦有普通吊弦和整体吊弦,普通环节吊弦以直径4mm(一般称为8号铁线)的镀锌铁线制成。整体吊弦种类也比较多,老的整体吊弦采用不锈钢直吊弦,一般由两段构成,中间增加调节螺扣,方便长度调节,现在普遍采用软铜铰线载流整体吊弦,有可调节和一次压死两种形式,吊弦两端均有载流环。高速普遍采用压死不可调整体吊弦,这样可增加系统的稳定性。 接触网导线也称为电车线,是接触网中重要的组成部分之一。电力机车运行中其受电弓滑板直接与接触摩擦,并从接触线上获得电能。性能、接触线截面积的选择应满足牵引供电计算的要求。
接触线一般制成两侧带沟槽的圆柱状,其沟槽为便于安装线夹并按技术要求悬吊固定接触线位置而又不影响受电弓滑板的滑行取流。接触线下面与受电弓滑板接触的部分呈圆弧状,称为接触线的工作面。
中国采用的铜接触线多为TCG-110和TCG-85两种型号,其字母T表示铜材,C表示电车线,G表示带沟槽形式,后面的数字表示该型铜接触线的截面积。近年来中国也引进使用日本的铜接触线。
中国研制和使用了钢铝接触线。钢铝接触线以铝和钢两种金属压接制成。以铝面作为导电部分,与受电弓滑板接触磨擦的是钢面,既保证了导电性能又提高了工作面的耐磨性,中国采用的钢铝接触线有GLCA100/215和GLCB80/173两种型号。字母GLC表示钢铝电车线,A、B表示线型,后面分式中,分母表示该型钢铝接触线的截面积,分子表示该型钢铝接触线的载流量当量于铜接触线的截面积。
现在中国主要采用铜银接触线,代表型号有CTHA-85,CTHA-110,CTHA-120等,新建高速也开始采用铜镁合金接触线。 接触网供电方式有单边、双边供电和越区供电。
单边和双边供电为正常的供电方式。
单边供电:供电臂只从一端的变电所取得电流的供电方式。
双边供电:供电臂从两端相邻的变电所取得电流的供电方式。
越区供电是一种非正常供电方式(也称事故供电方式)。
越区供电是当某一牵引变电所因故障不能正常供电时,故障变电所担负的供电臂,经开关设备成分区亭同相邻的供电臂接通,由相邻牵引变电所进行临时供电。
复线区段的供电情况与上述类同,但牵引变电所馈出线有四条,分别向两侧上、下行接触网供电。牵引变电所同一侧上、下行实现并联供电,提高供电臂末端电压。越区供电时,通过分区亭内的开关设备去实现。 接触网支柱的侧面限界是指支柱靠线路一侧至线路中心线的距离。它是为了确保行车的安全。
支柱侧面限界任何时候不得小于2440mm;机车走行线可降为2000mm;曲线区段适当加宽;直线中间支柱一般取为2500mm;软横跨支柱一般取为3000mm;软横跨支柱位于站台时,为便于旅客行走,一般取为3000mm。 接触网导线高度(简称导高),是指悬挂定位点处接触线距轨面的垂直高度,设计规范规定如下:
最高高度:不大于6500mm。
最低高度:
(1)区间、站场:
①一般中间站和区间不小于5700mm。
②编组站、区段站及配有调车组的大型中间站,一般情况不小于6200mm。确有困难时可不小于5700mm。
(2)隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内):
①正常情况(带电通过5300mm超限货物)不小于5700mm。
②困难情况(带电通过5300mm超限货物)不小于5650mm。
③特殊情况不小于5250mm。接触线高度的允许施工偏差为±30mm。 沿电气化铁路、城市交通电动车辆运行线路架设的特殊形式的供电线路。来自牵引变电所的电能通过接触网和装在车上的受流器向电力机车或电动车辆供电。通常要求接触网在任何气象因素(冰、风、雨、雪等)和最大运行速度下能保证安全供电,并有良好的耐磨、抗腐蚀、电损耗小等性能。
分类 根据供电对象不同,接触网分为架空悬挂和接触轨(第三轨)两种基本形式。架空悬挂式接触网又可按其纵向索线的数目和特点,分为简单悬挂和链形悬挂两种。前者弛度大、悬挂弹性不均匀,主要用在电车或工矿机车专用线上;后者接触导线纵向有张力调节装置,并使用承力索、吊弦和弹性吊弦,使接触导线在不同温度下都处于无弛度状态。
铁道干线常用的架空链形悬挂式接触网如图所示。图中1和2是立于路侧的接触网支柱及其基础,通常由金属和预应力钢筋混凝土做成,用来悬挂接触网。为了维修方便、缩短断线故障范围并进行不同温度下悬挂的张力补偿,接触网悬挂分成独立的锚段(即区段),每个锚段的中部设有中心锚结,使悬挂不能纵向移动,而两端则有重力式张力调节装置(图中未绘出),在不同温度下,可保持接触网的张力一定。图中3和4是腕臂式支持装置和绝缘子,它们和定位肩架9、棒式绝缘子10、定位管11一起,使接触导线稳定地悬挂于线路的上方。图中5、6、7、8分别为承力索、吊弦、弹性吊弦和接触导线,12为受流器,又称受电弓。为了避免接触导线对受流器滑板的集中磨耗,以提高滑板的使用寿命,并使滑板的受磨部位较为均匀,接触导线在直线区段均布置成之字形,即使在最强烈的风力下,导线的偏移也不超出受电弓滑板的工作范围。为了减小故障范围、便于检修以及使各相负荷较为平衡,接触网还设有分段装置,即所谓电分段装置和电分相装置。早期采用的电分段装置用四跨锚段关节;相分段装置用六跨和八跨式绝缘锚段关节。这些装置比较复杂,无电区长且投资大。70年代以来中国利用玻璃钢等材料,造出多种形式的分段绝缘器和分相绝缘器,使两区段间的过渡区缩短到只需十几米。
地下铁道由于净空限制,一般采用第三轨,即在行车轨道的一侧,用绝缘支架架设一条离地约400毫米高的第三轨。第三轨由高导电率的特殊软钢制成,地铁电动车辆通过安装在它侧面的受流器(接触靴),与第三轨摩擦接触而获得电能。中国北京的地铁和世界一些国家的地铁都采用第三轨受电。70年代前后,有些国家建设的地铁以及80年代开始筹建的中国上海地铁,由于地下和地面联运以及接触网电压上升到1500伏等原因,均采用较为安全并可充分利用隧道圆形截面顶部空间的架空接触网,再通过装在动车顶上的受电弓获得电能。

5. 电气化铁路接触网施工有哪些工序

施工工艺
支柱装配整体到位
1 工艺流程
(1) 传统工艺流程
将悬挂接触线和承力索的腕臂、拉杆、绝缘子、支座以及定位器、定位管等装置组成的支持结构组装到支柱上称支柱装配.传统支柱装配施工工艺流程为研究装配结构图、根据支柱装配图预配、作业车安装、架线前后作业车调整.
(2) 支柱装配整体到位工艺流程
支柱整体到位的安装,其流程包括研究装配图和技术条件,进行现场支柱埋设后的技术状态的测量(采集现场数据) 、计算机处理数据、打印装配表、集中装配及作业车安装.
整体到位工艺流程设计比传统工艺在预配前多两个工序,即现场数据采集和计算机数据处理,少了一道架线前后的调整工序,使安装工艺起了根本变化.传统方法是按设计提供的支柱装配图预配后安装的,实际下部工程施工时常因地下固定建筑物、土质情况和施工误差等原因的影响,造成支柱安装后其侧面限界、埋深、倾斜度及线路超高等发生与原设计标准值大小不等的变化,在挂线前不易发现支柱装配的准确程度, 挂线受力后才发现承力索位置偏离、定位环位置偏高偏低、拉杆抬头等现象.因此,就只有在负载情况下进行调整,这样不仅费力费时,而且需占用封闭时间使用作业车才能完成.支柱装配整体到位新工艺的显著特点是将实际情况均考虑在预配尺寸内,使每一个支柱的装配达到标准范围,这样就消除了支柱受力后尺寸的变化及前工序的各种累计误差等影响下列主要尺寸,如结构高度尺寸、承力索与接触线在垂直面上的位置、拉出值等.新工艺不仅减少了作业车作业次数,而且提高了支柱一次整体到位的目的.
5.1.2 施工工艺
(1) 现场测量
要达到整体到位一次安装成功的目的,要对每一根支柱进行实际安装状态的测量,不仅要将各支柱线路的实际状态用数据表示出来,而且所测量的数据要达到一定的精确度.
(2) 计算机软件
支柱装配、预配尺寸是通过对测量取得的支柱埋深、支柱倾斜率及倾斜值、侧面限界、线路超高及设计给定的结构高度、拉出值、接触线高度、定位器倾斜率和器材的主要尺寸等进行计算,然后给出拉杆长度、鞍子、定位管、定位环、定位器的安装位置.为准确和快速起见,将计算过程开发成专用软件,只要将现场实测数据输入计算机后就可直接打印出预配尺寸表,供预配用.
(3) 集中预配
按预配尺寸表的数据用腕臂预配尺测量,进行腕臂预先组装.
(4) 作业车安装
为方便起见,安装时定位器和定位管分别预配完, 为准确起见在承力索架设完后,对定位环的位置进行复测和检算工作,待架完接触线后与吊弦一起安装,其他部分在架线前安装.
5.2 承力索、接触线超拉工艺技术
承力索和接触线架设中实现超拉的主要目的是克服新线初伸长对接触网整体状态的影响.通过研究及试验后确定出超拉的方式和超拉的数据与时间,作为超拉工艺的主要技术参数.
5.2.1 国内外铜电车线、钢绞线初伸长消除方式
关于初伸长的问题国内外对电力架空线的有关设计和施工中都是采取措施进行补偿的.美国根据长期施工经验,在绞线安装前以破断张力的50 % 至70 % 进行预拉,人为地造成永久性伸长,而避免绞线在安装后运行中再产生永久性伸长.在不能采取上述措施时, 根据气象特点适当减少绞线安装弛度.
日本接触网技术资料表明,日本国铁接触网施工在架设承力索、接触线时,采用了一定数值的张力,对其进行预拉(铜接触线30 min , 钢绞线10 min) 消除其初伸长后,才正式下锚固定.
铜电车线、钢绞线的初伸长的影响主要表现为两部分:其一,下锚端的延伸结果直接使补偿坠砣的高度产生过大偏差,可能形成坠砣卡滞的严重后果;其二, 被悬挂定位处的延伸,导致定位件、悬挂件纵向偏差过大,甚至产生严重的横向偏差,从而破坏正常的“弓网” 运行关系.至今,在我国《铁路电力牵引供电施工规范》(TB10208 —98) 中,仅对消除第一部分的影响规定了施工方法,即按初伸长率预留坠砣高度,而对如何消除其初伸长第二部分的影响尚未提出一次性的处理方法.
5.2.2 整体到位安装铜电车线、钢绞线消除初伸长超拉方式、超拉张力的确定
(1) 超拉方式的确定高压架空输电线路施工技术手册中明确指出:
“金属绞线的初伸长大小,与其自身结构、弹性系数、外加荷重的大小及加荷时间有关”.因此,我单位参照此原则选用30 m 试验线段在基地先进行超拉试验,取得了有益经验并在内昆线得到实际应用.
(2) 超拉张力的确定
为了掌握常用的GJ 70 和TCG 110 线材的初伸长值与超拉时间及超拉张力的规律,参照架空电力线消除初伸长和日本对超拉的规定,制定了取30 m 长的试验线,用补偿装置为超拉装置做线材超拉试验,从而取得线材初伸长值与超拉时间及超拉张力的相应规律.试验及理论验算均表明:
① 在接触网工程施工中,应用超拉的方式消除承力索、接触线初伸长的影响在现有基础上是可行的;
② 承力索在116~210 倍额定张力条件下超拉时, 支柱、棒式绝缘子、腕臂等支持构件的机械强度都能承受;
③ 接触线在116~210 倍额定张力条件下超拉时, 承力索按正常悬挂考虑,不考虑最大风速,仅在小于350 m 曲线半径线路上的腕臂机械强度裕度不够;如考虑最大风速,也仅有小于450 m 曲线半径线路上的腕臂机械强度裕度不够;
④ 在小于350 m 曲线半径的线路上进行接触线的2 倍额定张力超拉时,针对其腕臂机械强度不够的问题,可采用临时加强措施加以解决.
5.2.3 超拉工艺技术
(1) 不占用封闭点超拉工艺技术
安装起锚坠砣附加装置→承力索或接触线架设→ 安装中心锚结→ 安装下锚坠砣附加装置→ 超拉30~ 60 min →正式下锚.
利用补偿装置作为附加张力进行超拉.此种超拉方式可方便地利用补偿坠砣为附加张力的重量砝码完成超拉,这种超拉方式的最大优越性是不需占用封闭时间进行.
(2) 占用封闭点超拉工艺技术
占用封闭时间进行超拉,可以充分利用施工机械架线车来进行超拉.根据实际情况可分为:用1 台架线车在下锚端施加超拉张力,起锚端作正式固定(包括坠砣高度) 的单车机械超拉方式;用2 台架线车在起、下锚两端同时超拉的机械超拉方式.
1 台架线车时工艺流程:正式起锚安装限高拉绳→承力索或接触线架设→ 临时超拉固定→ 超拉10~ 30 min →正式下锚.
2 台架线车时工艺流程:起锚→ 承力索或接触线架设→临时超拉固定→ 超拉10~30 min → 正式下锚和起锚.
这种方式与不占用封闭时间的附加张力超拉方式相比可将补偿坠砣一次安装到位,无需先安装好中心锚结,且事故影响面较窄,处理能力强.
5.3 吊弦安装工艺及技术
首先,对承力索悬挂点的高度进行测量复核,根据下部工程隐蔽记录中的实际跨距等数据,通过软件计算后,得出每根吊弦长度及吊弦间距,列表供吊弦预配安装用.
吊弦一次整体到位安装工艺流程:测量承力索悬挂点高度→测量实际跨距→计算机数据处理→列表预配→作业车安装.
吊弦整体到位一次安装工艺是在承力索、接触线、支柱装配一次到位的基础上,通过测量计算后,将误差考虑在内,得到吊弦长度及位置的精确尺寸,达到一次整体到位安装的目的.
6 质量要求
(1) 测量误差控制
跨距除决定支柱纵向安装位置外,最重要的是直接影响跨间吊弦长度,在整体吊弦施工前,先测量支柱跨距,沿钢轨布置吊弦间距,用红油漆标注在钢轨上(包括悬挂点处),测量误差控制在±5 mm 内.结构高度测量同样影响吊弦长度,需在接触线架设完成后方可测量,用测量杆挂到钩头鞍子中,测量承力索悬挂点到线路轨平面的距离,误差控制在±3 mm .
(2) 承导线初伸长控制
承导线通过初伸长直接使承力索偏移、吊弦纵向偏移,综合影响接触线高度、平滑程度和弓网关系.一般张力超拉可消除导线蠕变的80 % .
(3) 承力索、接触线张力控制承力索、接触线的张力是靠附挂坠砣重量的滑轮
补偿式恒张力装置来实现的,由计算过程可见导线的张力是决定吊弦长度的直接因素之一,因此要选择传动效率高的组合构件.严格控制坠砣重量误差,总误差控制在±1 % .
(4) 整体吊弦的制作安装误差控制
按照整体吊弦计算程序,采集测量、设计数据,经电脑计算,以施工表形式下发施工队.制作前,将青铜绞线进行预拉,预拉张力为115~210 kN , 预拉线不得收卷,直接用于下料.压制时吊弦线一定要穿至压接孔的根部,吊弦一端压制好后,对比施工表长度,再压制另一端,然后校核长度,误差控制在±2 mm .采用换算式测量尺或激光测量仪,检验接触线高度,检验误差控制在±10 mm .
7 安全措施
(1) 作业车上作业平台升降、转动应正常,各部照明设备要齐全,作业台与司机的通讯联络通畅,线盘制动器制动可靠,紧线装置正常.
(2) 起锚、终锚时的线夹安装严格按技术交底做好,以免紧线时承力索拉脱.
(3) 放线时,作业平台无特殊情况不得任意升降, 台上作业人员应时刻注意空中有无障碍,以免发生意外.遇有桥梁、隧道时应提前做好准备,及时降低作业台高度.
(4) 曲线段放线时,施工人员应站在曲线外侧作业,以免脱线伤人.
(5) 线盘监护人员应随时注意线盘的运转情况,线盘末段应固定牢固,发现异常迅速报告.
(6) 紧线过程中巡视人员应密切监视线索及支柱动态,发生线索在滑轮中脱落、卡住等情况,立即报告给指挥人员.紧线时紧线器应安装牢固,避免滑脱.紧线时作业车要保持原位不动,长大坡道处紧线时,应用铁靴制动.
(7) 驻站联络员与现场随时保持联系,若封锁时间内不能完成任务,驻站联络员要及时向车站调度员申请延时.
(8) 区间防护员在超拉锚段两侧防护,距离在1 km 以上.
(9) 落锚完毕后,巡视各悬挂点无安全隐患,人员方可撤离.
8 效益分析
接触网上部结构整体到位施工能极大提高劳动生产率,减少大量常见的返工返调工作,改善弓网关系, 接触网上部结构整体到位施工安装技术在内昆线接触网工程.

与接触网工程施工工艺标准相关的资料

热点内容
苏州假山景观设计工程 浏览:862
哈尔滨工程造价招聘 浏览:937
建筑工程土建劳务分包 浏览:632
道路监理工程师 浏览:476
安徽工程大学机电学院在本校吗 浏览:370
河北工程大学保研率多少 浏览:287
有学质量工程师的书吗 浏览:479
康乐县建筑工程公司 浏览:569
助理工程师二级 浏览:872
注册安全工程师初级考试时间 浏览:901
食品科学与工程专业课题研究 浏览:881
工程造价图纸建模 浏览:888
辽宁恒润建设工程有限公司 浏览:93
实行施工总承包的工程项目 浏览:737
道路桥梁工程技术兴趣爱好 浏览:316
密歇根理工大学电气工程专业 浏览:388
广西交通工程质量监督站 浏览:31
四川大学材料科学与工程学院考研参考书目 浏览:858
有线电视工程建设管理条例 浏览:270
云南工程监理公司排名 浏览:673