⑴ 开发过程中据说的迭代是什么意思
迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。
⑵ 什么是迭代式开发
我们的软件开发存在巨大的风险,但问题到底出在哪里呢?这对于问题的解决至关重要。 1. 我们在没有深刻理解业务需求的情况下就必须完成需求分析; 2. 客户在没有弄明白自己的真正需求的情况下就被要求确定软件的业务需求; 3. 我们在没有与客户再次沟通的情况下埋头苦干,直到完成开发并交付客户。 既然问题出在这里,我们就可以制订我们的解决办法: 1. 业务需求的分析不再是一蹴而就,而是贯穿软件开发的始终。一方面,我们在与客户的持续沟通中加深业务领域的理解,进而加深对业务需求的理解,另一方面,客户也在加深对软件的理解,进而完善自己的需求。 2. 软件开发的过程不再是单反面的埋头苦干,而是双方的良性互动。定期的用户体验,可使用户及时了解项目进度,发现软件问题,并及时提出来予以纠正,使软件的开发不断朝着正确的方向前进。 这就是迭代式开发。它是对以往开发模式的一种革新,但不是对以往开发模式的完全否定与摒弃,而是一种改造。 以往的瀑布式软件开发模式将整个软件开发过程分为四个阶段:需求分析、设计、开发、测试。与瀑布式软件开发不同,迭代式软件开发首先将整个开发过 程分为一个又一个的小段,每个小段大概在20个工作日左右,被称为“迭代(Iteration)”。一个迭代就是一个小的开发过程,如同瀑布式开发一样被 分为四个阶段:需求分析、设计、开发、测试。 采用迭代式开发,就是将以往的一个瀑布,变成了数个循环往复的瀑布,使软件以进化的方式逐渐推进。 最初的迭代,开发的是软件最基本最主要的功能,经过第一次迭代以后交付给客户。这时候客户看到的,不再是虚无缥缈的需求描述,而是实实在在的软件 界面。在此基础上,客户可能会认可我们的设计,也可能提出一些改进意见。修改这些意见,开始进入第二次迭代。第二次迭代可能是在第一次迭代的基础上进一步 丰富和完善功能,也可能是进一步实现其它第一次迭代还未实现的功能,之后再次交付客户。 如此循环往复,使我们不断在需求分析、设计、开发、测试,以及交付中,推进我们的软件开发。这样的开发过程,注定最终交付给客户的是他们满意的软件。这就是迭代式软件开发。
⑶ Fluent软件的迭代是什么意思啊
Fluent很合适,首先对轴承进行建模(可以用ProE建,导入GAMBIT,但推荐结构不复杂的话就GAMBIT直接建,GAMBIT建立的是流域的特点和其他建模软件有点不同),网格划分,导入Fluent设置完迭代计算就行了,流场和压力(静压,动压皆可)场都能输出。
初学的话推荐找本Fluent教材先做几个案例,北理出版的一本Fluent教程就不错
⑷ 什么是迭代
迭代器就是标准库里的指针,多了很多功能
另外
迭代器可以用来操纵容器
容器就是stl版的数组。。
⑸ 软件工程中 详细设计是一个迭代过程,对不对为什么
人的认识是不可能一下达到全面的,这个迭代过程是必然的。尤其是对于大型软件这样一个复杂的系统而言。
其实我这个回答太理论了,你的命题其实更多的是实践经验的总结。一个十几年经验的软件开发者。
⑹ 开发过程中据说的迭代是什么意思
迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。
重复执行一系列运算步骤,从前面的量依次求出后面的量的过程。此过程的每一次结果,都是由对前一次所得结果施行相同的运算步骤得到的。例如利用迭代法*求某一数学问题的解。
对计算机特定程序中需要反复执行的子程序*(一组指令),进行一次重复,即重复执行程序中的循环,直到满足某条件为止,亦称为迭代。
(6)软件工程什么是迭代计划扩展阅读
相关概念
函数
在数学中,迭代函数是在分形和动力系统中深入研究的对象。迭代函数是重复的与自身复合的函数,这个过程叫做迭代。
模型
迭代模型是RUP(Rational Unified Process,统一软件开发过程,统一软件过程)推荐的周期模型。
算法
迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
方法
迭代的方式就有所不同,假如这个产品要求6个月交货,我在第一个月就会拿出一个产品来,当然,这个产品会很不完善,会有很多功能还没有添加进去,bug很多,还不稳定,但客户看了以后,会提出更详细的修改意见。
这样,你就知道自己距离客户的需求有多远,我回家以后,再花一个月,在上个月所作的需求分析、框架设计、代码、测试等等的基础上,进一步改进,又拿出一个更完善的产品来,给客户看,让他们提意见。
就这样,我的产品在功能上、质量上都能够逐渐逼近客户的要求,不会出现我花了大量心血后,直到最后发布之时才发现根本不是客户要的东西的情况。
优势
这样的方法很不错,但他也有自己的缺陷,那就是周期长、成本很高。在应付大项目、高风险项目——就比如是航天飞机的控制系统时,迭代的成本比项目失败的风险成本低得多,用这种方式明显有优势。
如果你是给自己的单位开发一个小MIS,自己也比较清楚需求,工期上也不过花上个把月的时间,用迭代就有点杀鸡用了牛刀,那还是瀑布模型更管用,即使是做得不对,顶多再花一个月重来,没什么了不起。
⑺ 什么叫迭代啊。。
迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
例 1 : 一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?
分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有
u 1 = 1 , u 2 = u 1 + u 1 × 1 = 2 , u 3 = u 2 + u 2 × 1 = 4 ,……
根据这个规律,可以归纳出下面的递推公式:
u n = u n - 1 × 2 (n ≥ 2)
对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:
y=x*2
x=y
让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:
cls
x=1
for i=2 to 12
y=x*2
x=y
next i
print y
end
例 2 : 阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内, 45 分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴 2 20 个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。
分析: 根据题意,阿米巴每 3 分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到 45 分钟后充满容器,需要分裂 45/3=15 次。而“容器最多可以装阿米巴 2 20 个”,即阿米巴分裂 15 次以后得到的个数是 2 20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第 15 次分裂之后的 2 20 个,倒推出第 15 次分裂之前(即第 14 次分裂之后)的个数,再进一步倒推出第 13 次分裂之后、第 12 次分裂之后、……第 1 次分裂之前的个数。
设第 1 次分裂之前的个数为 x 0 、第 1 次分裂之后的个数为 x 1 、第 2 次分裂之后的个数为 x 2 、……第 15 次分裂之后的个数为 x 15 ,则有
x 14 =x 15 /2 、 x 13 =x 14 /2 、…… x n-1 =x n /2 (n ≥ 1)
因为第 15 次分裂之后的个数 x 15 是已知的,如果定义迭代变量为 x ,则可以将上面的倒推公式转换成如下的迭代公式:
x=x/2 ( x 的初值为第 15 次分裂之后的个数 2 20 )
让这个迭代公式重复执行 15 次,就可以倒推出第 1 次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。参考程序如下:
cls
x=2^20
for i=1 to 15
x=x/2
next i
print x
end
例 3 : 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2 ;若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。
要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。
分析: 定义迭代变量为 n ,按照谷角猜想的内容,可以得到两种情况下的迭代关系式:当 n 为偶数时, n=n/2 ;当 n 为奇数时, n=n*3+1 。用 QBASIC 语言把它描述出来就是:
if n 为偶数 then
n=n/2
else
n=n*3+1
end if
这就是需要计算机重复执行的迭代过程。这个迭代过程需要重复执行多少次,才能使迭代变量 n 最终变成自然数 1 ,这是我们无法计算出来的。因此,还需进一步确定用来结束迭代过程的条件。仔细分析题目要求,不难看出,对任意给定的一个自然数 n ,只要经过有限次运算后,能够得到自然数 1 ,就已经完成了验证工作。因此,用来结束迭代过程的条件可以定义为: n=1 。参考程序如下:
cls
input "Please input n=";n
do until n=1
if n mod 2=0 then
rem 如果 n 为偶数,则调用迭代公式 n=n/2
n=n/2
print "—";n;
else
n=n*3+1
print "—";n;
end if
loop
end
迭代法
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x0;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:
【算法】迭代法求方程的根
{ x0=初始近似根;
do {
x1=x0;
x0=g(x1); /*按特定的方程计算新的近似根*/
} while ( fabs(x0-x1)>Epsilon);
printf(“方程的近似根是%f\n”,x0);
}
迭代算法也常用于求方程组的根,令
X=(x0,x1,…,xn-1)
设方程组为:
xi=gi(X) (I=0,1,…,n-1)
则求方程组根的迭代算法可描述如下:
【算法】迭代法求方程组的根
{ for (i=0;i
x=初始近似根;
do {
for (i=0;i
y=x;
for (i=0;i
x=gi(X);
for (delta=0.0,i=0;i
if (fabs(y-x)>delta) delta=fabs(y-x);
} while (delta>Epsilon);
for (i=0;i
printf(“变量x[%d]的近似根是 %f”,I,x);
printf(“\n”);
}
具体使用迭代法求根时应注意以下两种可能发生的情况:
(1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。
递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n- 2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m 个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
【问题】 背包问题
问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。
设n 件物品的重量分别为w0、w1、…、wn-1,物品的价值分别为v0、v1、…、vn-1。采用递归寻找物品的选择方案。设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[ ],该方案的总价值存于变量maxv。当前正在考察新方案,其物品选择情况保存于数组cop[ ]。假定当前方案已考虑了前i-1件物品,现在要考虑第i件物品;当前方案已包含的物品的重量之和为tw;至此,若其余物品都选择是可能的话,本方案能达到的总价值的期望值为tv。算法引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值maxv时,继续考察当前方案变成无意义的工作,应终止当前方案,立即去考察下一个方案。因为当方案的总价值不比maxv大时,该方案不会被再考察,这同时保证函数后找到的方案一定会比前面的方案更好。
对于第i件物品的选择考虑有两种可能:
(1) 考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续递归去考虑其余物品的选择。
(2) 考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。
按以上思想写出递归算法如下:
try(物品i,当前选择已达到的重量和,本方案可能达到的总价值tv)
{ /*考虑物品i包含在当前方案中的可能性*/
if(包含物品i是可以接受的)
{ 将物品i包含在当前方案中;
if (i
try(i+1,tw+物品i的重量,tv);
else
/*又一个完整方案,因为它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
恢复物品i不包含状态;
}
/*考虑物品i不包含在当前方案中的可能性*/
if (不包含物品i仅是可男考虑的)
if (i
try(i+1,tw,tv-物品i的价值);
else
/*又一个完整方案,因它比前面的方案好,以它作为最佳方案*/
以当前方案作为临时最佳方案保存;
}
为了理解上述算法,特举以下实例。设有4件物品,它们的重量和价值见表:
物品 0 1 2 3
重量 5 3 2 1
价值 4 4 3 1
并设限制重量为7。则按以上算法,下图表示找解过程。由图知,一旦找到一个解,算法就进一步找更好的佳。如能判定某个查找分支不会找到更好的解,算法不会在该分支继续查找,而是立即终止该分支,并去考察下一个分支。
按上述算法编写函数和程序如下:
【程序】
# include
# define N 100
double limitW,totV,maxV;
int option[N],cop[N];
struct { double weight;
double value;
}a[N];
int n;
void find(int i,double tw,double tv)
{ int k;
/*考虑物品i包含在当前方案中的可能性*/
if (tw+a.weight<=limitW)
{ cop=1;
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv;
}
cop=0;
}
/*考虑物品i不包含在当前方案中的可能性*/
if (tv-a.value>maxV)
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv-a.value;
}
}
void main()
{ int k;
double w,v;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入各物品的重量和价值\n”);
for (totv=0.0,k=0;k
{ scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“输入限制重量\n”);
scanf(“%1f”,&limitV);
maxv=0.0;
for (k=0;k find(0,0.0,totV);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n总价值为%.2f\n”,maxv);
}
作为对比,下面以同样的解题思想,考虑非递归的程序解。为了提高找解速度,程序不是简单地逐一生成所有候选解,而是从每个物品对候选解的影响来形成值得进一步考虑的候选解,一个候选解是通过依次考察每个物品形成的。对物品i的考察有这样几种情况:当该物品被包含在候选解中依旧满足解的总重量的限制,该物品被包含在候选解中是应该继续考虑的;反之,该物品不应该包括在当前正在形成的候选解中。同样地,仅当物品不被包括在候选解中,还是有可能找到比目前临时最佳解更好的候选解时,才去考虑该物品不被包括在候选解中;反之,该物品不包括在当前候选解中的方案也不应继续考虑。对于任一值得继续考虑的方案,程序就去进一步考虑下一个物品。
【程序】
# include
# define N 100
double limitW;
int cop[N];
struct ele { double weight;
double value;
} a[N];
int k,n;
struct { int ;
double tw;
double tv;
}twv[N];
void next(int i,double tw,double tv)
{ twv.=1;
twv.tw=tw;
twv.tv=tv;
}
double find(struct ele *a,int n)
{ int i,k,f;
double maxv,tw,tv,totv;
maxv=0;
for (totv=0.0,k=0;k
totv+=a[k].value;
next(0,0.0,totv);
i=0;
While (i>=0)
{ f=twv.;
tw=twv.tw;
tv=twv.tv;
switch(f)
{ case 1: twv.++;
if (tw+a.weight<=limitW)
if (i
{ next(i+1,tw+a.weight,tv);
i++;
}
else
{ maxv=tv;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
case 0: i--;
break;
default: twv.=0;
if (tv-a.value>maxv)
if (i
{ next(i+1,tw,tv-a.value);
i++;
}
else
{ maxv=tv-a.value;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
}
}
return maxv;
}
void main()
{ double maxv;
printf(“输入物品种数\n”);
scanf((“%d”,&n);
printf(“输入限制重量\n”);
scanf(“%1f”,&limitW);
printf(“输入各物品的重量和价值\n”);
for (k=0;k
scanf(“%1f%1f”,&a[k].weight,&a[k].value);
maxv=find(a,n);
printf(“\n选中的物品为\n”);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n总价值为%.2f\n”,maxv);
}
递归的基本概念和特点
程序调用自身的编程技巧称为递归( recursion)。
一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:
(1) 递归就是在过程或函数里调用自身;
(2) 在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。
⑻ 如何制定产品迭代计划
产品进行迭代的流程计划如下:
1.需求选定阶段
先从需求池中提取需求,作为本周期内需要开发的内容,并进行优先级排序;排序顺序如下:
符合产品定位的需求优先开发
ROI(投资回报率)高的优先开发
严重影响用户体验的优先开发
2.需求评估阶段
召集相关部门和人员进行本周期的需求评估,以确定最终的开发内容,以及各部门工作的排期。开发文档越详细越细致越好,有利于项目的推进。
3.需求落地(设计与开发)
这是一个至关重要的环节,直接决定着本周期内的需求迭代能否成功。掌握项目的实际进度至关重要,在进度缓慢的时候向相关负责人做出反馈。
4.需求测试
在这个环节,我们要将本周期内开发完成的需求全部提交测试。需求测试分为两部分,第一部分整体逻辑测试,第二部分是提交QA测试。跟进测试进度,在测试同事对提测内容和逻辑有疑问时,需要及时解答。
5.产品上线
到需求测试为止的工作全部完成,即意味着本周期内需要开发的需求已经全部实现,且没有任何问题,产品可以上线,迭代完成!不过迭代完成后,还需要进行一次线上回测,最大限度地确保产品不存在任何问题。如果出现问题需要修复请快速联系技术部门进行修复,不能修复需要告知运营部门给用户合理的解释。
一个产品的迭代实际上是循环往复不间断的。要在连续更替的迭代周期当中做好每一个阶段的工作也不是一件容易的事情。有一些需要注意的事项:
科学设置迭代周期长度
将信息传达落实到位
合理地跟进项目进度
建立应急机制
适当地贡献出你的碎片时间
关于正确的心态与做法
⑼ 什么是迭代开发
迭代式开发也被称作迭代增量式开发或迭代进化式开发,是
一种与传统的瀑布式开发相反的软件开发过程,它弥补了传
统开发方式中的一些弱点,具有更高的成功率和生产率。
在迭代式开发方法中,整个开发工作被组织为一系列的短小
的、固定长度(如3周)的小项目,被称为一系列的迭代。
每一次迭代都包括了定义、需求分析、设计、实现与测试。
采用这种方法,开发工作可以在需求被完整地确定之前启动,
并在一次迭代中完成系统的一部分功能或业务逻辑的开发工
作。再通过客户的反馈来细化需求,并开始新一轮的迭代。